08,09

Люминесценция ионов Pr³⁺ и Nd³⁺ в двойных молибдатах

© Д. Софич¹, С.Г. Доржиева², О.Д. Чимитова², Б.Г. Базаров², Ю.Л. Тушинова², Ж.Г. Базарова², Р.Ю. Шендрик¹

интенсивности люминесценции ионов Pr^{3+} от температуры.

¹ Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия ² Байкальский институт природопользования СО РАН, Улан-Удэ, Россия E-mail: sofich-dmitriy@live.com

> Исследованы оптические спектры образцов двойных циркониевых молибдатов, активированных редкоземельными ионами Pr^{3+} и Nd³⁺. Показано наличие в спектрах поглощения, возбуждения и люминесценции полос, относящихся к 4f - 4f-переходам трехвалентных ионов Pr^{3+} и Nd³⁺. Выявлена сильная зависимость

Разработка экспериментальной установки, измерение спектров 4*f*-4*f*-переходов были выполнены в рамках госзадания по проекту IX.125.3 0350-2016-0024 (Д.О. Софич). Работы по синтез и характеризации структуры образцов осуществлялся в рамках государственного задания по проекту № 0339-2016-0007 и РФФИ № 18-08-00799а (С.Г. Доржиева, О.Д. Чимитова, Б.Г. Базаров, Ю.Л. Тушинова, Ж.Г. Базарова). Спектроскопия центров металл-кислород осуществлялась при поддержке Российского научного фонда, грант № 17-72-10084 (Р.Ю. Шендрик и Д.О. Софич).

DOI: 10.21883/FTT.2019.05.47598.35F

1. Введение

Множество исследований показывают перспективность применения молибдатов допированных редкоземельными ионами в качестве люминофоров, сцинтилляторов и лазерных сред [1-3]. Внимание к данным материалам обусловлено широкими возможностями варьирования их физико-химических свойств, термической и химической стабильности, а в некоторых случаях, крайне низким концентрационным тушением, несмотря на значительную концентрацию примеси [4]. Исследование спектральных характеристик двойных молибдатов с различными редкоземельными ионами позволит изучить процессы переноса и преобразования энергии при взаимодействии кристаллической матрицы с примесью. Данная работа посвящена спектроскопическим исследованиям порошков молибдатов состава Pr₂Zr₃(MoO₄)₉ и Nd₂Zr₃(MoO₄)₉. Одним из перспективных применений молибдатов допированных ионами Pr³⁺ является люминесцентная термометрия, основанная на явлении тушения люминесценции при повышении температуры [5]. Nd : YAG является коммерческим лазерным материалом, но в тоже время множество исследований направлено на поиск альтернативных соединений с ионами Nd^{3+} , пригодных для лазерной генерации, в том числе среди молибдатов и вольфраматов [6,7].

2. Синтез и методы исследования

Образцы двойных молибдатов синтезировались по керамической технологии путем ступенчатого отжига смеси стехиометрических количеств Pr_6O_{11} , Nd_2O_3 , MoO_3 и ZrO_2 в течение 150 h до максимальной температуры

700°С [8]. Рентгенофазовый анализ синтезированных соединений проведен на дифрактометре D8 Advance Bruker AXS (Си K_{α} -излучение). Спектры люминесценции измерялись при помощи двойного монохроматора СДЛ-1 с решетками 600 штрихов на mm и фотомодуля Нататаtsu H10721-04 для области 400-800 nm. Для области 800-1100 nm использовались решетки 300 штрихов на mm и охлаждаемый фотоумножитель ФЭУ-83. Возбуждение производилось при помощи ксеноновой лампы высокого давления ДКсШ-150 через монохроматор МДР-2 с дифракционной решеткой 1200 штрихов на тт. В качестве подложки для нанесения образца выступал полированный беспримесный кристалл LiF, который закреплялся в держателе вакуумного криостата. Полученные данные были скорректированы с учетом спектральных характеристик прибора. Спектры поглощения получены при помощи спектрофотометра Perkin-Elmer Lambda 950 UV/VIS/NIR, оборудованного интегрирующей сферой.

3. Результаты и обсуждение

Спектры поглощения $\Pr_2 Zr_3(MoO_4)_9$ и $Nd_2 Zr_3(MoO_4)_9$ (рис. 1) состоят из набора узких интенсивных полос, относящихся к 4f - 4f-переходам редкоземельных ионов \Pr^{3+} и Nd^{3+} , а также, широкой полосы поглощения в области 300 nm, обусловленной переходами с переносом заряда в MoO_4^{2-} группе.

Спектр люминесценции $Pr_2Zr_3(MoO_4)_9$ (рис. 2) при 77 К состоит из интенсивных тонких полос, соответствующих излучательным переходам трехвалентного иона празеодима с уровня ${}^{3}P_0$ на уровни ${}^{3}H_5$ (544 nm), ${}^{3}H_6$ (612 nm), ${}^{3}F_2$ (642 nm) и ${}^{3}F_4$ (727 nm). Каждая полоса

Рис. 1. Спектры поглощения $Pr_2Zr_3(MoO_4)_9$ и $Nd_2Zr_3(MoO_4)_9$.

Рис. 2. Спектры возбуждения (*a*) и люминесценции (*b*) $\Pr_2 Zr_3(MoO_4)_9$ при длинах волн возбуждения 490 nm (³ H_4 -³ P_0) и регистрации 612 nm (³ P_0 -³ H_6) соответственно.

состоит из интенсивной бесфононной линии и широкого фононного крыла, имеющего смещение относительно бесфононной линии на 150 cm⁻¹. В спектре возбуждения наблюдаются полосы 4f - 4f-переходов празеодима с основного состояния 3H4 на вышележащие уровни: ${}^{3}P_{0}$ (490 nm), ${}^{3}P_{1}$ (473 nm) и ${}^{3}P_{2}$ (450 nm). Также, присутствует широкая полоса возбуждения, относящаяся к переходам внутри комплекса MOO_{4}^{2-} (300 nm) с последующим возбуждением редкоземельного иона. На рис. 3 показано сравнение спектров люминесценции $Pr_{2}Zr_{3}(MoO_{4})_{9}$ при температуре жидкого азота и при комнатной температуре. При охлаждении образца интегральная интенсивность свечения основных полос $Pr_{2}Zr_{3}(MoO_{4})_{9}$ возрастает более чем в десять раз. Также, при охлаждении образца интегральная интенсивность свечения сильно запрещенных переходов с верхнего возбужденного уровня ${}^{3}P_{1}$ иона \Pr^{3+} падает в 1.4 раза. На рис. 4 показана температурная зависимость интенсивностей основных полос люминесценции $\Pr_{2}Zr_{3}(MoO_{4})_{9}$ при возбуждении в полосу ${}^{3}H_{4}-{}^{3}P_{1}$ (473 nm). Наблюдается резкое снижение интенсивности свечения 4f - 4f-переходов \Pr^{3+} при увеличении температуры в диапазоне 110–230 К. Анализ полученных данных показал, что процесс тушения люминесценции в $\Pr_{2}Zr_{3}(MoO_{4})_{9}$ имеет сложный характер, включающий в себя несколько перекрывающихся процессов, связанных с концентрационными и температурными эффектами.

Спектры свечения и возбуждения Nd₂Zr₃(MoO₄)₉ при температуре жидкого азота показаны на рис. 5. Спектр свечения состоит из интенсивных узких полос, соответствующих излучательным переходам трехвалентного иона неодима с уровня ${}^{4}F_{3/2}$ на уровни ${}^{4}I_{9/2}$ (880 nm) и ${}^{4}I_{11/2}$ (1060 nm). В спектре возбуждения присутствует набор перекрывающихся полос 4f - 4f-переходов Nd³⁺

Рис. 3. Спектры люминесценции $Pr_2Zr_3(MoO_4)_9$ с возбуждением 490 nm $({}^{3}H_4 - {}^{3}P_0)$ при различных температурах.

Рис. 4. Нормированные температурные зависимости интенсивности люминесценции различных полос $Pr_2Zr_3(MoO_4)_9$ от температуры при возбуждении 473 nm (${}^{3}H_4 - {}^{3}P_1$).

Рис. 5. Спектры возбуждения (a) и люминесценции (b) Nd₂Zr₃(MoO₄)₉ при длинах волн возбуждения 580 nm (${}^{4}I_{9/2} - {}^{2}G_{7/2}$) и регистрации 1060 nm (${}^{4}F_{3/2} - {}^{4}I_{11/2}$) соответственно.

с основного состояния ${}^{4}I_{9/2}$ на вышележащие группы уровней ${}^{4}G$, ${}^{2}G$, ${}^{4}P$, ${}^{2}P$, ${}^{4}F$, ${}^{4}S$ и ${}^{2}H$ с различными значениями полного углового момента электрона. Полоса возбуждения с переносом заряда имеет низкую интенсивность, а ее положение не отличается от полосы в спектре $\Pr_{2}Zr_{3}(MoO_{4})_{9}$. Интенсивность и форма полос в диапазоне температур 77–300 К меняется слабо.

В работе [9] было показано, что в соединениях $Tb_2Zr_3(MoO_4)_9$, $Eu_2Zr_3(MoO_4)_9$ реализован эффективный механизм передачи возбуждения с комплексов MoO_4^{2-} на редкоземельные ионы с последующей интенсивной 4f - 4f-люминесценцией. В соединениях, изученных в данной работе, эффективность возбуждения в полосе с переносом заряда существенно слабее прямого 4f - 4f-возбуждения редкоземельного иона. Также, стоит отметить сильную температурную зависимость люминесценции $Pr_2Zr_3(MoO_4)_9$ от температуры, чего не наблюдалось для других изученных нами редкоземельных ионов в матрицах двойных молибдатов.

4. Заключение

В работе изучены спектральные характеристики редкоземельных ионов Pr^{3+} и Nd^{3+} в матрицах двойных циркониевых молибдатов. Люминесценция $Pr_2Zr_3(MoO_4)_9$ регистрируется в области 500–750 nm и связана с излучательными переходами внутри 4f-оболочек редкоземельных ионов Pr^{3+} . Свечение $Nd_2Zr_3(MoO_4)_9$ также связано с типичными для Nd^{3+} 4f –4f-переходами в ближней инфракрасной области (850–1100 nm). Полосы в спектрах возбуждения и поглощения имеют одинаковую природу и относятся к возбуждению комплексов MoO_4^{2-} (300 nm) и 4f-оболочки редкоземельных ионов. Показано наличие в данных со-

единениях механизма передачи возбуждения с матрицы на редкоземельный ион при возбуждении в полосу с переносом заряда. Сильная температурная зависимость свечения $\Pr_2 Zr_3 (MoO_4)_9$ имеет сложный характер, и для определения причин тушения люминесценции необходимы дополнительные исследования.

Список литературы

- C. de Mello Donegá, M.J.D. Crombag, A. Meijerink, G. Blasse. J. Lumin. 60, 74 (1994).
- [2] M. Guzik, M. Boeza, E. Tomaszewicz, Y. Guyot. E. Zych, G. Boulon. Opt. Mater.41, 21 2015.
- [3] V. Mahalingam, J. Tjorumalai, R. Krishnan, R. Chandramohan. J. Mater. Sci.: Mater. Electron. 26, 842 (2015).
- [4] H. Yamamoto, S. Seki, T. Ishiba. J. Solid State Chem. 94, 396 (1991).
- [5] Y. Gao, F. Huang, H. Lin, J. Xu, Y. Wang. Sensors and Actuators B 243, 137 (2017).
- [6] A. Brenier, G. Jia, C. Tu. J. Phys.: Condens. Matter. 16, 9103 (2004).
- [7] Т.Т. Басиев, М.Е. Дорошенко, Л.И. Ивлева, В.В. Осико, М.Б. Космына, В.К. Комарь, Я. Шульц, Х. Единкова. Квантовая электрон. 36, 720 (2006).
- [8] С.Г. Доржиева, Ю.Л. Тушинова, Б.Г. Базарова, А.И. Непомнящих, Р.Ю. Шендрик, Ж.Г. Базарова. Изв. РАН. Сер. физ. 79, 300 (2015).
- [9] D. Sofich, Yu.L. Tushinova, R. Shendrik, B.G. Bazarov, S.G. Dorchieva, O.D. Chimitova, J.G. Bazarova. Opt. Mater. 81, 71 (2018).

Редактор Д.В. Жуманов