УДК 535.37

ГИПЕРЧУВСТВИТЕЛЬНЫЙ ПЕРЕХОД ⁵*D*₀-⁷*F*₂ ТРЕХВАЛЕНТНОГО ЕВРОПИЯ В ДВОЙНЫХ МОЛИБДАТАХ

© 2019 г. Д. О. Софич^{1,} *, С. Г. Доржиева², О. Д. Чимитова², Б. Г. Базаров², Ю. Л. Тушинова², Ж. Г. Базарова², Р. Ю. Шендрик¹

¹Федеральное государственное бюджетное учреждение науки Институт геохимии им. А.П. Виноградова Сибирского отделения Российской академии наук, Иркутск, Россия

²Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук, Улан-Удэ, Россия

> **E-mail: sofich-dmitriy@live.com* Поступила в редакцию 03.09.2018 г. После доработки 10.09.2018 г. Принята к публикации 22.10.2018 г.

Представлены результаты исследования поведения гиперчувствительного перехода ${}^{5}D_{0}-{}^{7}F_{2}$ иона Eu³⁺ в матрицах двойных молибдатов при разных длинах волн возбуждающего света, а также, при переносе возбуждения с иона Tb³⁺ на ион Eu³⁺ в дважды допированных молибдатах.

DOI: 10.1134/S0367676519030220

введение

Основной составляющей спектров люминесценции редкоземельных ионов являются переходы внутри $4f^{n}$ -оболочки. Локальное окружение редкоземельных ионов слабо влияет на эти переходы, однако, некоторые из них очень чувствительны к окружению иона. Переходы, для которых изменение полного момента электрона выполняется по правилу $\Delta J = \pm 2$ названы гиперчувствительными [1]. В ионах Eu³⁺ разрешено несколько электрических дипольных переходов с возбужденного состояния ${}^{5}D_{0}$ на уровни ${}^{7}F_{2}$, ${}^{7}F_{4}$ и ${}^{7}F_{6}$. Также разрешен магнитный дипольный переход ${}^{5}D_{0}-{}^{7}F_{1}$. Таким образом, в спектре свечения Eu³⁺ есть один гиперчувствительный к локальному окружению переход: ${}^{5}D_{0}-{}^{7}F_{2}$.

Свечение Eu³⁺ сильно зависит от правил отбора по симметрии окружения иона, так как они в основном и определяют вид спектра [2]. В некоторых работах [3, 4] ионы Eu³⁺ используют в качестве зондов для определения локальной симметрии вещества, поэтому чрезвычайно важно учитывать все особенности свечения гиперчувствительных переходов.

В данной работе рассматриваются результаты исследования поведения гиперчувствительного перехода ${}^{5}D_{0}-{}^{7}F_{2}$ трехвалентного иона Еи в матрицах двойных молибдатов при различных условиях.

СИНТЕЗ И МЕТОДЫ ИССЛЕДОВАНИЯ

Синтез порошков двойных молибдатов проводили по керамической технологии путем ступенчатого отжига смеси стехиометрических количеств Eu₂O₃, Tb₄O₇, MoO₃ и ZrO₂ в течение 150 ч до максимальной температуры 700°С [5]. Рентгенофазовый анализ синтезированных соединений проведен на дифрактометре D8 Advance Bruker AXS (Си K_{λ} -излучение). Спектры люминесценции были зарегистрированы при помощи двойного монохроматора СДЛ-1 с решетками 600 штр · мм⁻¹ и фотоэлектронного умножителя ФЭУ-106, возбуждение производилось при помощи ксеноновой лампы высокого давления ДКШ-150 через монохроматор МДР-2 с дифракционной решеткой 1200 штр. · мм⁻¹. В качестве подложки для нанесения образца выступал полированный беспримесный кристалл LiF, который закрепляли в держателе.

ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ

Спектр люминесценции Eu₂Zr₃(MoO₄)₉ (рис. 1) состоит из интенсивных тонких полос, соответствующих излучательным переходам трехвалентного иона европия с уровня ${}^{5}D_{0}$ на группу уровней ${}^{7}F_{n}$ где n = 0, 1, 2, 3, 4. Также в спектре наблюдаются полосы со слабой интенсивностью, относящиеся к запрещенным переходам ${}^{5}D_{1}-{}^{7}F_{1}$ (535 нм), ${}^{5}D_{1}-{}^{7}F_{2}$ (555 нм) и ${}^{5}D_{1}-{}^{7}F_{3}$ (588 нм). Наличие в спектре перехода ${}^{7}F_{0}-{}^{5}D_{0}$

Рис. 1. Спектры возбуждения (*a*) и люминесценции (*б*) $Eu_2Zr_3(MoO_4)_9$.

(583 нм) и расщепление линий остальных разрешенных переходов группы ${}^{7}F_{n}$ свидетельствует о тригональной сингонии окружения ионов европия [6]. В спектре возбуждения наблюдаются полосы $4f^{6}-4f^{6}$ -переходов европия с основного состояния ${}^{7}F_{0}$ на вышележащие уровни. Наиболее интенсивные переходы происходят на уровни ${}^{5}D_{2,3,4}\,{}^{5}G_{2,3,4,5}$ и ${}^{5}L_{6,7,8}$. Также присутствует широкая полоса возбуждения, относящаяся к переходам внутри комплекса Мо-О (297 нм) с последующим возбуждением редкоземельного иона.

При охлаждении образца до температуры жидкого азота происходит небольшое сужение полос вследствие уменьшения вклада температурного уширения линий. Интенсивности полос и их штарковских компонент не меняются. Исключение составляет переход ${}^{5}D_{0}-{}^{7}F_{2}$ (615 нм), у которого происходит сильное перераспределение интенсивностей между штарковскими компонентами при выполнении ряда условий, а именно, образец находится при температуре жидкого азота и происходит возбуждение в переход ${}^{7}F_{0}-{}^{5}D_{2}$ (464 нм). Только в этом случае происходит изменение формы полосы ${}^{5}D_{0}-{}^{7}F_{2}$ как показано на рис. 2.

При возбуждении в других 4f-4f полосах Eu^{3+} , а также в полосе возбуждения комплекса Mo–O подобные явления не наблюдаются. Спектры люминесценции при различных длинах волн возбуждения приведены на рис. 3.

Запрещенные переходы ${}^{5}D_{2}-{}^{7}F_{6}$ (608 нм) и ${}^{5}D_{1}-{}^{7}F_{4}$ (620 нм) имеют низкую интенсивность, и

Рис. 2. Аппроксимация функциями Гаусса участка спектра с полосой ${}^{5}D_{0}-{}^{7}F_{2}$ (615 нм) при возбуждении полосы ${}^{7}F_{0}-{}^{5}L_{6}$ (395 нм) (*a*) и ${}^{7}F_{0}-{}^{5}D_{2}$ (464 нм) (*б*) при температуре 77 К.

= 297 K

 $\lambda_{BO36} = 464 \text{ HM}$

 $\lambda_{BO3G} = 395 \text{ HM}$

Рис. 3. Вид полосы ${}^{5}D_{0} - {}^{7}F_{2}$ в Eu₂Zr₃(MoO₄)₉ при различных длинах волн возбуждения и температурах.

они разрешаются на спектре отдельно от полосы ${}^{5}D_{0}-{}^{7}F_{2}$. Измерения времен затухания в работе [7] позволяют говорить о том, что в данных материалах преобладают центры свечения одного типа.

Похожий эффект проявляется в молибдатах, дважды допированных трехвалентными европием и тербием. Были изучены составы с различным соотношением редкоземельных ионов. Как было показано ранее в работе [7], в данных материалах происходит значительный перенос возбуждения с тербия на европий. В дважды допированных молибдатах полосы люминесценции и возбуждения в большинстве случаев являются смесью полос Tb³⁺ и Eu³⁺, при этом в полосе ${}^{5}D_{0}-{}^{7}F_{2}$ мы можем выделить более длинноволновый переход ${}^{5}D_{4} - {}^{7}F_{3}$, относящийся к иону Tb³⁺. Обнаружено, что происходит перераспределение интенсивности между штарковскими компонентами уровня европия ${}^{5}D_{0}-{}^{7}F_{2}$ при переносе возбуждения с иона Tb³⁺ на Eu³⁺. На рис. 4 показано, что с увеличением концентрации Tb³⁺, а также, в зависимости от полосы возбуждения, происходит изменение формы полосы $Eu^{3+5}D_0 - {}^7F_2$ при комнатной температуре.

Еще более сильное изменение полосы ${}^{5}D_{0}-{}^{7}F_{2}$ происходит при возбуждении ионов Tb³⁺ в полосу ${}^{5}D_{4}-{}^{7}F_{6}$ (490 нм), не имеющую общих длин волн с полосами Eu³⁺. Таким образом, происходит возбуждение только ионов Tb³⁺, с последующим переносом возбуждения на ионы Eu³⁺ и люминесценцией. Как видно из рис. 4, происходит перераспределение между штарковскими компонентами, как в случае с Eu₂Zr₃(MoO₄)₉. Таким образом, можно предположить, что в данном случае на поведение гиперчувствительного перехода ${}^{5}D_{0}-{}^{7}F_{2}$ иона Eu³⁺

Рис. 4. Вид полосы ${}^{5}D_{0} - {}^{7}F_{2}$ при комнатной температуре в (Eu_{0.9}Tb_{0.1})₂Zr₃(MoO₄)₉ (*a*), (Eu_{0.5}Tb_{0.5})₂Zr₃(MoO₄)₉ (*б*), (Eu_{0.1}Tb_{0.9})₂Zr₃(MoO₄)₉ (*в*) при различных длинах волн возбуждения.

воздействует как кристаллическое окружение, так и способ возбуждения. Вторая гипотеза в данном случае представляется более вероятной, так как было показано, что для формы полосы ${}^{5}D_{0}-{}^{7}F_{2}$ в Eu₂Zr₃(MoO₄)₉ определяющим фактором будет длина волны возбуждения. Таким образом, в данной работе возбуждение Eu³⁺ протекает через передачу возбуждения с Tb³⁺, что вызывает изменение формы полосы перехода ${}^{5}D_{0}-{}^{7}F_{2}$.

ЗАКЛЮЧЕНИЕ

Рассмотрено поведение гиперчувствительного перехода ${}^{5}D_{0}-{}^{7}F_{2}$ иона Eu³⁺ в кристаллической матрице двойных молибдатов. Установлено, что при различных видах возбуждения иона Eu³⁺ изменяются интенсивности штарковских компонент данного перехода. Так, при возбуждении иона Eu³⁺ в переход ${}^{7}F_{0}-{}^{5}D_{2}$ при температуре 77 К происходит значительное увеличение интенсивности коротковолновой штарковской компоненты данного перехода. Подобное явление происходит также при переносе возбуждения Tb³⁺ \rightarrow Eu³⁺. Вопрос о механизме данного явления остается открытым для дальнейших исследований.

Экспериментальная установка была разработана в рамках госзадания, согласно проекту IX.125.3 0350-2016-0024. Измерения спектров поглощения и определение ширины запрещенной зоны выполнены при поддержке гранта РФФИ № 18-32-00298 мол_а. Спектроскопические исследования кислород-лантаноидных комплексов проводили при поддержке гранта Российского научного фонда № 17-72-10084, РФФИ № 18-08-00799а,

 $\lambda_{BO36} = 297 \text{ HM}$

и государственного задания БИП СО РАН (проект № 0339-2016-0007).

СПИСОК ЛИТЕРАТУРЫ

- 1. Jørgensen C.K., Judd B.R. // Molecular Phys. 1964. V. 8. № 3. P. 281.
- 2. *Keskar M. et al.* // J. Photochem. and Photobiol. A: Chem. 2015. V. 311. P. 59.
- 3. Zhao D. et al. // J. Phys. B. 2007. V. 395. № 1-2. P. 10.

- 4. *Yan C.H. et al.* // Appl. Phys. Lett. 2003. V. 82. № 20. P. 3511.
- Доржиева С.Г., Тушинова Ю.Л., Базаров Б.Г. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 300; Dorzhieva S.G., Tushinova Yu.L., Bazarov B.G. et al. // Bull. Rus. Acad. Sci.: Phys. 2015. V. 79. № 2. Р. 276.
- 6. *Tanner P.A.* // Chem. Soc. Rev. 2013. V. 42. № 12. P. 5090.
- 7. Sofich D., Tushinova Yu.L., Shendrik R.et al. // Opt. Matt. 2018. V. 81. P. 71.