УДК 535.34

ДВУХВАЛЕНТНЫЕ РЕДКОЗЕМЕЛЬНЫЕ ИОНЫ Pr, Sm, Ho, Er, Tm, Yb В КРИСТАЛЛАХ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ ФТОРИДОВ

© 2017 г. Т. Ю. Сизова^{1*}, В. Ю. Веслополова², Р. Ю. Шендрик^{1,2}, А. В. Егранов^{1,2}, Е. А. Раджабов^{1,2}, А. А. Шалаев^{1,2}

¹Федеральное государственное бюджетное учреждение науки Институт геохимии имени А. П. Виноградова Сибирского отделения Российской академии наук, Иркутск

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет"

*E-mail: sizova@igc.irk.ru

Представлены результаты исследования спектров поглощения радиационно-окрашенных кристаллов CaF₂, SrF₂ и BaF₂, активированных трехвалентными ионами Pr, Sm, Ho, Er, Tm, Yb. Показано, что ионизирующее излучение восстанавливает примесные ионы до двухвалентного состояния. Температурная устойчивость двухвалентных RE-ионов в кристаллах в радиационно-окрашенных CaF₂ коррелирует с химической стабильностью соединений с двухвалентными RE-ионами. В радиационно-окрашенном при комнатной температуре кристалле CaF₂-Pr, нагретом до температуры 200 °C, создаются фотохромные центры.

DOI: 10.7868/S0367676517090095

ВВЕДЕНИЕ

Оптические свойства кристаллических материалов, активированных редкоземельными ионами, определяются валентностью примесного иона. Ионы редких земель входят в кристаллы щелочно-земельных фторидов (ШЗФ) как правило, в трехвалентном состоянии. При внешнем воздействии на кристаллы (облучение ионизирующим излучением или нагрев в парах металла (аддитивное окрашивание)) редкоземельные элементы могут восстанавливаться до двухвалентного состояния [1-3]. Элементы Y, La, Ce, Gd, Tb, Lu, имеющие низкий третий потенциал ионизации, образуют фотохромные центры в радиационно- и аддитивно-окрашенных кристаллах CaF₂, SrF₂ [4-6]. Такие кристаллы могут быть использованы в качестве голографических сред [7].

Исследование влияния различных условий на стабильность валентности примесных ионов или на изменение их валентности при внешнем воздействии представляет не только прикладной, но и фундаментальный интерес.

Ранее нами были исследованы оптические свойства и термическое разрушение наведенных центров в кристаллах CaF_2 , SrF_2 , BaF_2 , активированных Y, La, Ce, Gd, Tb, Lu [4, 5]. В настоящей работе представлены результаты исследований спектров поглощения в температурном диапазоне 300–900 К двухвалентных ионов Pr, Sm, Ho, Er,

Tm, Yb в радиационно-окрашенных кристаллах CaF_2 , SrF_2 , BaF_2 .

МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы фторидов выращивались методом Стокбаргера в трехствольном графитовом тигле в вакууме. Несколько процентов CdF_2 добавлялось в сырье для очистки от примеси кислорода. Концентрация примеси фторидов лантаноидов (PrF₃, SmF₃, HoF₃, ErF₃, TmF₃, YbF₃) в шихте была 0.01, 0.1 и 0.3 мол.%. Спектры поглощения в области 190–2000 нм измерялись на спектрофотометре Perkin-Elmer Lambda-950. Радиационное облучение производилось с помощью рентгеновской трубки БХВ-12 при напряжении 25 кВ и токе 20 мА в течение 30 мин. Образцы размещались непосредственно на выходном окне рентгеновской трубки и они окрашивались с двух сторон.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Под действием рентгеновского излучения при комнатной температуре в кристаллах CaF_2 , SrF_2 , BaF_2 , активированных трехвалентными редкоземельными ионами, происходит частичное восстановление ионов RE^{3+} до двухвалентного состояния RE^{2+} . Интенсивные полосы поглощения двухвалентных редкоземельных ионов (Sm, Ho, Er,

Рис. 1. Спектры поглощения радиационно-окрашенных при комнатной температуре кристаллов CaF₂, SrF₂, BaF₂, активированных трехвалентными ионами Tm, Yb, Er, Sm, Ho, Pr: $a - 1 - \text{CaF}_2$ -Tm, $2 - \text{SrF}_2$ -Tm, $3 - \text{BaF}_2$ -Tm; $\delta - 1 - \text{CaF}_2$ -Yb, $2 - \text{SrF}_2$ -Yb, $3 - \text{BaF}_2$ -Yb; $e - 1 - \text{CaF}_2$ -Er, $2 - \text{SrF}_2$ -Er; $e - 1 - \text{CaF}_2$ -Sm, $2 - \text{SrF}_2$ -Sm, $3 - \text{BaF}_2$ -Sm; $\partial - 1 - \text{CaF}_2$ -Ho, $2 - \text{SrF}_2$ -Ho, $3 - \text{BaF}_2$ -Ho; $e - 1 - \text{CaF}_2$ -Pr, $2 - \text{SrF}_2$ -Pr, $3 - \text{BaF}_2$ -Sm; u_3 method измерены при комнатной температуре.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 81 № 9 2017

Ттуb, Pr) лежат в видимой и УФ-областях спектра (рис. 1) [2, 3]. Также при радиационном окрашивании кристаллов параллельно с RE^{2+} -центрами идет образование дырочных F_3^- - и (F_2^-)_{*ii*}-центров [8, 9].

Дырочные центры

(F₂)_{*ii*}-центры в кристаллах ЩЗФ представляют собой дырку, локализованную на межузельных ионах фтора, ориентированных по оси [110] [9]. F₃-центры представляют собой цепочку из трех фторов (два находятся в анионных узлах, один – в междоузлии), ориентированных по оси [111] [8]. Полосы поглощения дырочных центров лежат в области 4.1 эВ ((F_2^-)_{*ii*}-центры) [9] и 6.2 эВ (F₃-центров) [8] и маскируются сильными полосами двухвалентных ионов RE²⁺. Определение положения полос поглощения дырочных центров в кристаллах ЩЗФ проводилось вычитанием спектров поглощения кристаллов, облученных рентгеновским излучением, из спектров аддитивно окрашенных кристаллов [8, 9]. При аддитивном окрашивании наблюдается образование электронных центров, в то время как радиационное окрашивание создает и электронные, и дырочные центры. Также положение полосы поглошения одинаково для кристаллов ШЗФ, активированных различными редкоземельными ионами [8, 10] в отличие от полос поглощения RE^{2+} , которое различается для разных элементов.

Двухвалентные редкоземельные ионы

Спектры двухвалентных редкоземельных ионов (Sm, Ho, Er, TmYb, Pr) в кристаллах CaF₂, SrF₂, BaF₂ характеризуются серией широких полос поглощения в видимой и УФ-области и обусловлены разрешенными переходами в смешанную 4f-5d-оболочку [3, 8, 11–13, 14].

Сдвиг полос поглощения в высокоэнергетическую область в ряду CaF_2 -SrF₂-BaF₂ обусловлен действием кристаллического поля [15]. В кристаллах CaF_2 наблюдается более эффективное образование наведенных центров по сравнению с кристаллами SrF₂ и BaF₂, активированных теми же примесями, что может быть связано с увеличением плотности кристаллов в ряду CaF_2 -SrF₂-BaF₂. В спектрах кристаллов СаF₂, SrF₂, BaF₂, активированных празеодимом помимо полос поглощения переходов в ионах Pr^{2+} в области 1–5 эВ наблюдается интенсивное поглощение в области 6 эВ, обусловленное переходами 4*f*-5*d* в Pr^{3+} -ионах [16].

На рис. 2 показаны кривые термического разрушения наведенных центров в окрашенных кристаллах CaF_2 -Sm. В спектре поглощения после радиационного окрашивания при комнатной температуре кристаллов CaF_2 -Sm³⁺наблюдаются полосы

Рис. 2. Спектры поглощения кристалла CaF_2 -SmF₃, измеренные после радиационного окрашивания при комнатной температуре (*1*), после нагревания окрашенного кристалла до: 50 °C (2), до 100 °C (*3*), до 300 °C (*4*), до 350 °C (*5*), до 550 °C (*6*), до 700 °C (*7*). Спектры измерены при комнатной температуре.

 $4f^6-4f^55d^1$ -переходов Sm²⁺ [11]. При нагревании кристаллов до 100 °С наблюдается спад поглощения в области 4 эВ, что обусловлено разрушением (F_2^-)_{*ii*}-центров [9]. Полоса поглощения F_3^- -центров (максимум полосы поглощения около 6 эВ) является более термически устойчивой и разрушается одновременно с полосами поглощения Sm²⁺. Центры Sm²⁺ в кристаллах CaF₂ оказались наиболее термически устойчивы из всех исследуемых двухвалентных ионов в кристаллах CaF₂, SrF₂, BaF₂, и разрушились при нагревании кристалла до температуры около 700 °С.

При нагревании кристаллов ЩЗФ, активированных Ho, Er, Tm и Yb, разрушение наведенных рентгеновским излучением центров, наблюдалось подобно описанному выше для кристаллов CaF₂-Sm. Температуры разрушения Ho²⁺, Er²⁺, Tm²⁺ и Yb²⁺ указаны в таблице.

Таблица. Температура преобразования $RE^{2+} \rightarrow RE^{3+}$ при нагревании радиационно-окрашенных кристаллов CaF_2 , SrF_2 , BaF_2 , °C

	Sm	Nd	Tm	Yb	Но	Er	Pr
CaF ₂	700	570	500	500	350	300	240 (Pr ²⁺) 300 (РС центры?)
SrF_2	600	520	400	250	200	250	100
BaF ₂	300	470	300	200	100	Не на- водят- ся	100

Рис. 3. Спектры поглощения кристалла CaF_2-PrF_3 , измеренные после радиационного окрашивания при комнатной температуре (*I*), после нагревания окрашенного кристалла до 100 °C (*2*), после нагревания окрашенного кристалла до 200 °C (*3*), после нагревания окрашенного кристалла до 250 °C (*4*), после нагревания окрашенного кристалла до 300 °C (*5*). Спектры измерены при комнатной температуре.

На рис. 3 показаны кривые термического разрушения облученных кристаллов CaF₂-Pr.

При нагревании окрашенного кристалла до температуры 200 °C наблюдается изменение спектра поглощения. Появляется полоса поглощения при 3 эВ, а также наблюдается сдвиг максимума полосы поглощения при 1.9 эВ в низкоэнергетическую область. При дальнейшем нагревании кристалла наблюдается разрушение измененного спектра поглощения. Все полосы разрушаются при нагревании до температуры 300 °С. Изменение спектра поглощения сопровождается изменением окраски кристалла. После облучения кристалл приобретает серую окраску, которая при нагревании становится зеленой. Подобное изменение окраски кристалла и его спектров поглощения наблюдается при образовании фотохромных центров окраски (РС-центров) в радиационно-окрашенных кристаллах CaF₂, активированных Y, La, Ce, Gd, Tb, Lu [4, 5]. В данных исследованиях также было показано, что РС-центры в радиационно-окрашенных кристаллах CaF₂ разрушаются при температурах 300-350 °С. Ранее в работе Науез [16] сообщалось, что ионы трехвалентного Pr при воздействии на кристалл CaF₂ ионизирующего излучения могут как восстанавливаться до двухвалентного состояния, так и участвовать в формировании фотохромных центров. Однако экспериментальных результатов исследования РС центров в данных кристаллах не приводилось. Также в имеющихся обзорах [2, 6] было показано, что радиационное окрашивание

Рис. 4. Сравнение температуры окисления двухвалентных редкоземельных ионов в кристаллах CaF₂ и их третьего потенциала ионизации [17].

из электронных центров создает только двухвалентные ионы $Pr^{2+}.$

Фотохромный эффект в кристаллах CaF₂-Pr в настояшей работе не изучался, как и исследование термического разрушения спектров поглощения наведенных центров в температурном диапазоне 80-300 К. Эти вопросы планируется обсудить в последующих работах. Однако характер изменения спектров поглощения при нагревании кристалла, а также температура разрушения наведенных полос поглощения позволяют предположить, что полосы поглощения с максимумами 3 эВ и 1.7 эВ принадлежат РС-центрам. В спектрах кристаллов SrF₂-Pr и BaF₂-Pr не наблюдается появление новых полос при нагревании кристаллов. При температуре 100 °С происходит разрушение полос поглощения, наведенных при радиационном окрашивании.

Окисление редкоземельных ионов до трехвалентного состояния при нагревании радиационно-окрашенных кристаллов наблюдается при различных температурах (таблица). Из таблицы видно, что температура окисления редкоземельных ионов различается для разных элементов.

На рис. 4 представлено сравнение температуры окисления двухвалентных редкоземельных ионов в кристаллах CaF_2 и их третьего потенциала ионизации [17]. Известно, что ионы с более высоким третьим потенциалом ионизации являются более стабильными в двухвалентном состоянии [17]. Температуры окисления ионов La, Ce, Gd, Tb определены нами ранее при исследовании фотохромных центров в кристаллах CaF_2 [2, 5]. Из сопоставления данных кривых видно, что процесс окисления редкоземельных ионов при нагревании кристаллов CaF_2 происходит при более высоких температурах для ионов с наиболее высоким третьим потенциалом ионизации (Sm, Nd, Tm, Yb, Er), которые вместе с тем образуют устойчивые двухвалентные соединения. Температурная устойчивость двухвалентных RE-ионов в кристаллах в радиационно-окрашенных CaF₂ коррелирует с химической стабильностью соединений с двухвалентными RE-ионами. Изменение валентности иона редкоземельного элемента сопровождается разрушением дырочных центров, которые создаются совместно с двухвалентными ионами при облучении кристаллов. Таким образом, при нагревании до определенной температуры имеет место рекомбинация дырочного центра и двухвалентного редкоземельного иона.

Для ионов с наименьшим третьим потенциалом ионизации (La, Ce, Gd, Tb) этот процесс наблюдается при более низких температурах и сопровождается образованием фотохромных центров. В этом случае возможны два механизма окисления двухвалентного редкоземельного иона: 1) перенос электрона с двухвалентного редкоземельного иона на ионизированный фотохромный центр с образованием фотохромных центров; 2) рекомбинация двухвалентного редкоземельного иона с дырочным центром. На основании того, что температуры преобразования ионизированных фотохромных центров и окисления двухвалентных редкоземельных ионов совпадают, можно сделать вывод о том, что первый предложенный механизм окисления более вероятен.

ЗАКЛЮЧЕНИЕ

При радиационном окрашивании кристаллов CaF_2 , SrF_2 , BaF_2 , активированных трехвалентными ионами редкоземельных элементов, наблюдается образование двухвалентных примесных ионов а также дырочных F_3^- и $(F_2^-)_{ii}$ -центров.

Двухвалентные ионы самария в радиационноокрашенных кристаллах ЩЗФ оказались наиболее термически устойчивыми.

Температурная устойчивость двухвалентных RE-ионов в кристаллах в радиационно-окрашенных CaF₂ коррелирует с химической стабильностью соединений с двухвалентными RE-ионами.

В спектрах поглощения кристаллов CaF₂-Pr обнаружены полосы поглощения фотохромных центров.

Работа выполнена с использованием научного оборудования ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН.

Работа выполнена при поддержке РФФИ (гранты № 15-02-06514 и 15-02-06666).

СПИСОК ЛИТЕРАТУРЫ

- 1. McClure D.S., Kiss Z. // J. Chem. Phys. 1963. 19. P. 3251.
- 2. Merz J.I., Pershan P.S. //Phys. Rev. 1967. 162. P. 217.
- Архангельская В. А. и др. // Оптика и спектроскопия. 1967. С. 509.
- 4. Bugaenko(Sizova) T., Radzhabov E., Ivashechkin V. // Phys. Solid State. 2008. V. 50. P. 1671.
- Sizova T., Radzhabov E. // IEEE Transact. on Nucl. Sci. 2012. P. 592098.
- Catlow C. R.A. // J. Phys. C: Solid State Phys. 1979. 12. P. 969.
- 7. Shcheulin A. S. et al. // JOSA B. 2014. 31.2. P. 248.
- *Radzhabov E.* //Opt. and Spectroscopy. 2016. V. 120 (1). P. 123.
- 9. Фигура П.В., Непомнящих А.И., Раджабов Е.А. // Оптика и спектроскопия. 1988. Т. 65, Вып. 4. С. 940.
- 10. Sizova T., Radzhabov E., Shendrik R., Egranov A., Shalaev A. // Radiation Measurements. 2016. T. 90. C. 68.
- 11. Wood D. L., Kaiser W. // Phys. Rev. 1962. V. 126. P. 2079.
- Lankchmanan A. R., Tiwari S. S. // Radiation Protection Dosimetry. 1993. V. 47. 1/4. P. 243.
- Weakliem H. A., Kiss Z. J. // Phys. Rev. 1967. V. 157. № 2. P. 277.
- Kaczmarek S. M., Tsuboi T., Ito M., Boulon G., Leniec G. // J. Phys.: Condens. Matter. 2005. V. 17. P. 3771.
- 15. Radzhabov E., Nepomnyashchikh A. // Solid State Commun. 2008. V. 146. P. 376.
- Hayes W., Stoneham A. Crystals with fluorite structure. Electronic, vibrational, and defect properties / Ed. W. Hayes. Oxford: Clarendon press, 1974. 448 p.
- Meyer G. The divalent state in solid rare earth metal halides. // The Rare Earth Elements: Fundamentals and Applications / Ed. D. A. Atwood. Chichester: John Wiley & Sons, Ltd., 2012. P. 1–13.