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Abstract 

New polycrystalline powder samples of double Ln2Zr(WO4)5  

(Ln = Dy, Tb) tungstates were synthesized using high-temperature 

solid-phase and sol-gel methods. The conditions of the sol-gel syn-

thesis of tungstates were optimized. The obtained phases were char-

acterized by the X-ray powder diffraction on the basis of the crystal-

lographic data of similar Ln–Zr molybdates. It is found that 

Ln2Zr(WO4)5 (Ln = Dy, Tb) double tungstates crystallize in the ortho-

rhombic crystal system, space group Cmc21 (Z = 4). The intensive 

luminescence in the green spectral region for Tb2Zr(WO4)5 and yel-

low spectral region for Dy2Zr(WO4)5 was shown. 
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1. Introduction 

The search and synthesis of new compounds are associat-

ed with the study of multicomponent systems. In terms of 

the formation of promising compounds, molybdate and 

tungstate systems are of great interest [1–19]. Complex 

oxide compounds containing REE and elements of the IV B 

subgroup (Ti, Zr, Hf) are the objects of intensive research 

in connection with the search of new materials used as 

solid-state electrolytes, phosphors and matrices for immo-

bilizing radioactive waste. Previously, we studied interac-

tions in the ternary oxide systems in the subsolidus region 

by the intersecting cuts method and established the for-

mation of three types of compounds with following formu-

las: Ln2Zr3(MoO4)9 (1:3) (Ln = La–Tb), Ln2Zr2(MoO4)7 (1:2) 

(Ln = Sm–Dy), Ln2Zr(MoO4)5 (1:1) (Ln = Tb–Lu) [20–22]. 

The crystal structures for the double molybdate represent-

atives were also studied [23]. This work was devoted to 

synthesis and luminescent characteristics of double tung-

states Ln2Zr(WO4)5 (Ln = Tb, Dy) obtained  by a solid-

phase synthesis and sol-gel methods. It was established 

that the tungstate phases are isostructural to the molyb-

denum analogues. 

2. Experimental 

New Ln2Zr(WO4)5 (Ln = Tb, Dy) tungstates were obtained 

by the solid-phase reaction and sol-gel technique. For sol-

id-phase synthesis, Ln2O3 (99.9% purity), ZrO2 obtained 

by calcining ZrO(NO3)22H2O (analytical grade), WO3 (ana-

lytical grade) were used as starting reagents. The initial 

oxides, preliminary calcined at T=200 °C, were thoroughly 

mixed in appropriate ratios. The samples were annealed in 

porcelain crucibles in air in a muffle furnace. The initial 

annealing temperature was 450 °C. The final synthesis 

temperature was varied in the range of 750–800 °C with 

50 h dwell time. In the course of synthesis, the samples 

were repeatedly ground in an agate mortar in ethanol. The 

phases were identified by X-ray phase analysis using a D8 

Advance Bruker diffractometer.  

Also, double tungstates Ln2Zr(WO4)5 (Ln = Tb, Dy) 

were synthesized by the Pechini method, where ethylene 

glycol is completely replaced by water, there by reducing 

the amount of organic compounds. The second difference 

is the formation of an amorphous gel-like substance in-

stead of a polymer. As a complexing agent, as in the 

Pechini method, an aqueous solution of citric acid 

(C6H8O7H2O) was used.  
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The excitation and emission spectra in the UV-IR range 

were measured using a MDR-2 laboratory monochromator 

and a SDL-1 dual monochromator. The absorption spectra 

were obtained using a Perkin-Elmer Lambda 950 

UV/VIS/NIR spectrophotometer, operating in the range of 

180–3000 nm with a maximum resolution of 0.2 nm. To 

measure the absorption spectra of powder samples to the 

device, a prefix was connected to the integrating sphere 

with a diameter of 150 mm. Powder was poured into a 

quartz ampoule and was fixed in the holder of the inte-

grating sphere. The absorption of the test glass was sub-

tracted from the absorption spectra. 

3. Results and Discussion 

Ln2Zr(WO4)5 (Ln = Tb, Dy) double tungstates were ob-

tained by ceramic and sol-gel methods. The conditions of 

the sol-gel technique for obtaining of Ln2Zr(WO4)5  

(Ln = Tb, Dy) were optimized. The synthesis scheme is 

shown in Figure 1. 

 
Figure 1 Block diagram of the sol-gel technique for obtaining of 
Ln2Zr(WO4)5 (Ln = Tb, Dy) tungstates. 

According to the X-ray powder diffraction data, all 

compounds synthesized by two methods are isostructural. 

Crystallographic parameters of double tungstates was de-

termined using the TOPAZ 4.2 program according to data 

of isostructural high-temperature phase of Er2Zr(MoO4)5 

molybdate [24]. The results of refinement are shown in 

Table 1. Ln2Zr(WO4)5 (Ln = Tb, Dy) are crystallized in or-

thorhombic crystal system, space group Cmc21 (Z = 4). The 

shape and intensity of the spectral lines indicate low 

symmetry of rare-earth ions coordination, which is in 

good agreement with the crystallographic data of molyb-

dates. As an example, Figure 2 shows an X-ray diffraction 

pattern for Tb2Zr(WO4)5 obtained by the solid state reac-

tion. 

Table 1 The refinement parameters for Ln2Zr(WO4)5 (Ln = Tb, Dy). 

The crystal structure of the studied tungstates can be 

represented by a three-dimensional mixed framework 

consisting of three polyhedra: WO4 tetrahedra, Ln(2)/ZrO6 

octahedra and eight vertex polyhedra Ln(1)O8 connected to 

each other through common oxygen atoms (Figure 3). Ln 

and Zr atoms are distributed with equal probability over 

equivalent crystallographic positions. 
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Figure 2 Measured and calculated powder diffraction patterns for Tb2Zr(WO4)5 together with the difference curve (Cu Kα1 radiation). 

Empirical 

formula 
Tb2Zr(WO4)5 Dy2Zr(WO4)5 

Formula weight, 
g/mol 

1648.31 1655.46 

Crystal system Orthorhombic 

Space group Cmc21 

Cell parameters, 
Å 

a = 21.078(1) 

b = 9.6844(4) 
c = 9.8164(6) 

a = 21.177(1) 

b = 9.6737(7) 
c = 9.8176(8) 

Cell volume, Å3 2003.8(1) 2011.3(2) 

Z 4 

Calc. density, 

g/sm3 
4.061 4.047 

Rwp, % 2.88 6.75 

Rp, % 2.24 5.34 

GOF 1.80 1.21 



Chimica Techno Acta 2022, vol. 9(2), No. 20229205 ARTICLE 

3 of 5 

 
Figure 3 The structural model of Ln2Zr(WO4)5 (Ln = Tb, Dy), 
viewed along the b axis. Light-lilac tetrahedra are formed by W 

atoms, dark-grey octahedra by Ln(2)/Zr atoms and turquoise pol-
yhedra by Ln(1)atoms. 

In the excitation spectra of the investigated tungstates 

Tb2Zr(WO4)5, two types of bands are observed – narrow, 

corresponding to transitions inside 4f shells of REE (rare 

earth elements) and broad bands associated with charge 

transfer bands in complexes WO4
2– on REE. The lumines-

cence and excitation spectra of Tb2Zr(WO4)5 in the band 

with an energy of 26500 cm–1 (λ = 377 nm) are shown in 

Figure 4. The position of the bands associated with transi-

tions inside the 4f shell remains almost unchanged in the 

molybdate and the tungstate. The vertical lines in Figure 4 

represent the energies of corresponding terms according 

to Carnall [25]. 

 
Figure 4 Excitation (1) and luminescence (2) spectra of 
Tb2Zr(WO4)5 tungstate. 

Since Tb2Zr(WO4)5 is isostructural to the corresponding 

molybdate analogue Tb2Zr(MoO4)5 [26], all their spectra 

(luminescence, excitation) are similar. The luminescence 

spectra are characterized by the band with a highest inten-

sity and maximum in the region of 18500 cm–1 (λ = 540 

nm) associated with the 5D4–7F5 magnetic dipole transi-

tion. The luminescence band with a maximum at 20500 

cm–1 (λ = 488 nm) refers to the electric dipole transition 
5D4–7F6 in a Tb3+ ion and depends on the symmetry of the 

crystal field; it is more intense than the other bands (ex-

cept for 5D4–7F5) and splits into three types, which indi-

cates a spatial distortion of the 8-vertex TbO8 polyhedra 

with a decrease in symmetry. 

The absorption spectra of Dy2Zr(WO4)5 (Figure 5) ex-

hibit a number of bands corresponding to transitions from 

the ground term of the 4F15/2 and 4f- state to higher energy 

terms. The position of the bands associated with transi-

tions inside the 4f shell remains almost unchanged in the 

molybdate and in the tungstate. 

Upon excitation by a laser with a wavelength of 

404.5 nm, three emission bands with energies of 

15100 cm–1, 17400 cm–1, and 20600 cm–1 are observed 

(Figure 6, curve 2), associated with transitions inside the 

Dy3+ ions. The most intense is the band with a maximum at 

17400 cm–1, associated with the transition from the 4F9/2 

term to the 6H13/2 term (yellow region of the spectrum), 

the luminescence band at 20600 cm–1 is associated with 

transitions from the 4F9/2 to 6H15/2 term (blue spectral re-

gion), and the 15100 cm–1 band is associated with the  
4F9/2–6H11/2 transition (red spectral region). 

 
Figure 5 Absorption spectrum of Dy2Zr(WO4)5. 

 
Figure 6 Excitation (1) and emission (2) spectra of Dy2Zr(WO4)5. 
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The 4F9/2–6H15/2 transition is magnetic-dipole and its in-

tensity weakly depends on the crystal environment. The 
4F9/2–6H13/2 transition is of the electric-dipole type. Due to 

low symmetry, the 4F9/2–6H13/2 transition becomes partial-

ly allowed and its intensity is higher or comparable to the 

intensity of the 4F9/2–6H15/2 transition in crystals without 

an inversion center. If a rare-earth ion occupies a position 

with an inversion center and its environment is sufficient-

ly symmetric, then the transition intensity is significantly 

lower than 4F9/2–6H15/2. Thus, we can conclude that the 

environment of the rare-earth ion has rather low sym-

metry, which is confirmed by the structural analysis data. 

In the excitation spectrum of yellow luminescence 

(Figure 6, curve 1), there is a number of bands associated 

with the transition from the 4H15/2 term to higher energy 

terms with subsequent relaxation and luminescence from 

the 4F9/2 level. The most intense excitation bands corre-

spond to transitions to the 4F3/2, 4L19/2 terms; upon excita-

tion to a group of levels with lower energies: 6P5/2, 4M19/2, 
5F7/2, 4I13/2, luminescence with a lower intensity is observed. 

4. Conclusions 

New Ln2Zr(WO4)5 (Ln = Tb, Dy) double tungstates were 

obtained by ceramic and sol-gel techniques. The conditions 

of the sol-gel synthesis of tungstates were optimized. 

Their crystallographic and luminescent properties were 

determined. It was established that Ln2Zr(WO4)5 (Ln= Dy, 

Tb) double tungstates are crystallized in orthorhombic 

crystal system, space group Cmc21 (Z = 4). 

The luminescence properties of Tb3+, Dy3+ ions in tung-

state matrices were investigated. The observed spectral 

lines and bands of luminescence and excitation were iden-

tified. The structural features of the considered double tung-

states suggest the possibility of their use as matrices for ob-

taining effective laser materials and promising phosphors. 
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