УДК 535.3

ВЛИЯНИЕ КАТИОННЫХ ПРИМЕСЕЙ НА РАДИАЦИОННОЕ ДЕФЕКТООБРАЗОВАНИЕ В ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ ФТОРИДАХ

© 2015 г. А. В. Егранов^{1, 2}, Т. Ю. Сизова¹, Р. Ю. Шендрик^{1, 2}, Н. А. Смирнова¹

E-mail: alegra@igc.irk.ru

На основе собственных экспериментальных результатов и анализа литературных данных предложена новая модель фотохромных центров, создающихся при радиационном или аддитивном окрашивании щелочно-земельных фторидах, активированных редкоземельными ионами La, Ce, Gd, Tb, Lu и Y.

DOI: 10.7868/S0367676515020088

ВВЕДЕНИЕ

Все кристаллы щелочно-земельных фторидов достаточной чистоты радиационно устойчивы при комнатной температуре [1, 2]. Активация щелочно-земельных фторидов некоторыми катионными примесями приводит в ряде случаев к эффективному радиационному окрашиванию. Влияние катионных примесей на образование собственных дефектов в анионной подрешетке можно свести к двум существенно различным процессам.

Образования центров, включающих примесный ион и анионную вакансию, идет при температурах выше начала движения анионных вакансий, и температурный диапазон образования этих центров довольно широк: от 200 К до комнатной температуры и даже выше. В этом случае образование анионных вакансий, по-видимому, связано с безызлучательным распадом автолокализованного, релаксированного экситона, т.е. с обычным процессом радиационного дефектообразования, наблюдаемым в неактивированных щелочно-галоидных кристаллах. Ранее такие центры были изучены нами в кристаллах CaF₂ SrF₂ и BaF₂, активированных двухвалентными ионами кадмия, и в кристаллах CaF₂, SrF₂, активированных ионами цинка [3-5].

Образования центров, включающих примесный ион и анионную вакансию, идет при температуре кипения жидкого азота, и создание их не связано с термически активационным процессом движения анионных вакансий. По-видимому, такое образование связано с конфигурационной неустойчивостью около некоторых редкоземельных ионов и иттрия при захвате электрона на возбужденное состояние примесного иона [6]. В результате такой неустойчивости образуются так называемые фотохромные центры, в состав которых, согласно существующей модели, входят трехвалентный ион, анионная вакансия и один (PC⁺-центр) или два электрона (PC-центр) [7–9].

В настоящей работе предложена новая модель для PC-центра, в которой нет необходимости во втором электроне. PC-центры похожи на возмущенные F-центры, а в состав PC⁺-центров, повидимому, входят двухвалентные редкоземельные ионы. Переход между ними можно представить как перенос электрона между частями одной конфигурации, т.е. PC-центр имеет структуру $Re^{3+}F$ (глубокая ловушка), а PC⁺-центр имеет структуру $Re^{2+}v_a$ (мелкая ловушка), и между ними возможен перенос электрона с использованием фотонов: $Re^{3+}F \leftrightarrow Re^{2+}v_a$.

ТЕХНИКА ЭКСПЕРИМЕНТА

Кристаллы щелочно-земельных фторидов, активированных редкоземельными ионами La, Ce, Gd, Tb, Lu и Y, выращивали методом Стокбаргера из расплава в инертной атмосфере. Для предотвращения образования кислородных примесей в шихту добавляли фтористый кадмий. Радиационное окрашивание проводили с помощью рентгеновской трубки с Pd-анодом в режиме 20 мA, 40 кВ со временем облучения, не превышающим 60 мин. Спектры поглощения измеряли на спектрофотометре Lambda 950 UV/VIS/NIR Байкальского аналитического центра коллективного пользования CO PAH.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Влияние различный условий на стабильность валентности примесных ионов или на изменение

¹ Федеральное государственное бюджетное учреждение науки Институт геохимии имени А.П. Виноградова Сибирского отделения Российской академии наук, Иркутск.

² Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет".

Рис. 1. Расщепление уровней двухвалентных ионов в кристаллическом поле.

их валентности при каком-то воздействии представляет не только прикладной, но и фундаментальный интерес.

Элементы Y, La, Ce, Gd, Tb, Lu, имеющие низких третий потенциал ионизации, не восстанавливаются в процессе радиационного окрашивания до двухвалентного состояния, а образуют фотохромные центры, в состав которых, согласно существующей в настоящее время модели, входит трехвалентный ион, анионная вакансия и один (PC⁺-центр) или два электрона (PC-центр) [7–9].

Редкоземельные ионы La, Ce, Gd, Tb, Lu не создают устойчивых соединений в двухвалентном состоянии с ионами кислорода, фтора, хлора и брома. Способность образовывать двухвалентные соединения лучше всего анализировать по образованию иодидов, так как иодид-ион (I⁻) – лучший восстановитель в ряду F⁻, Cl⁻, Br⁻, I⁻. Двухвалентные иодиды Nd, Sm, Eu, Dy, Tm, и Yb - хорошие диэлектрики, они образуют устойчивые соединения, в то время как LaI₂, CeI₂, PrI₂, и GdI₂ приобретают металлический блеск и обладают хорошей электронной проводимостью [10]. Все это указывает на то, что редкоземельные ионы, образующие фотохромные центры в щелочно-земельных фторидах, не способны удерживать электрон в двухвалентном состоянии, потеря которого преобразует их в трехвалентное состояние.

В свободном состоянии ионы La²⁺, Gd²⁺ и Y²⁺ имеют основное состояние d^1 , для ионов Ce²⁺, Tb²⁺, основное состояние f^n , но $f^{n-1}5d$ и f^n близки по энергии. Для Lu²⁺ основное состояние $4f^{14}6s$ близко по энергии к состоянию $4f^{14}5d$. В кристаллах с решеткой типа флюорита кубическое кристаллическое поле расщепляет d состояние на

Оптическая плотность, отн. ед.

Рис. 2. Спектры поглощения кристаллов CaF_2 -Gd (*1*) и CaF_2 -Y (*2*), облученных рентгеновским излучением при 80 К.

два: дважды вырожденное (е) энергия которого понижается на $3/5\Delta$, где Δ – величина расщепления состояния d кристаллическим полем, и трехкратно вырожденное (t) состояние, энергия которого повышается на $2/5\Delta$, при этом нижним уровнем является двукратно вырожденный, поэтому во многих материалах двухвалентные ионы Ce^{2+} , Тb²⁺ и Lu²⁺ имеют электронную конфигурацию $4f^{1}5d^{1}4f^{8}5d^{1}4f^{14}5d^{1}$ соответственно. Таким образом, основное состояние для этих двухвалентных ионов d^1 и. следовательно, в спектрах поглошения наблюдаются два типа переходов: $d \rightarrow d$ -переходы, которые должны быть похожи для всех этих ионов, и для La, Ce, Gd, Tb еще $5d^1 \rightarrow f$ -переходы, по которым и легко определить валентное состояние примеси, особенно для Се²⁺ [11].

$d \rightarrow d$ -переходы

 $5d^1$ -состояние расщепляется кубическим кристаллических полем на два: дважды вырожденное и трехкратно вырожденное, и поэтому лиганды вокруг примесного иона испытывают ян-теллеровское искажение, и происходит дальнейшее расщепление *t* и *e*-состояний (рис. 1). Ян-теллеровское искажение, решетки приводит к частичному разрешению оптических переходов внутри *d*-оболочки.

Расщепление *d*-состояния в щелочноземельных фторидах имеет величину около 20000 см⁻¹ [12] и полосу поглощения около 2.3 эВ (18550 см⁻¹) (рис. 2), по-видимому, можно приписать переходам с нижнего *e*- на *t*-состояние (рис. 1). Полоса поглощения имеет плохо выраженную структуру,

Рис. 3. Спектры поглощения при 80 К кристаллов CaF₂-Ce (*a*) и BaF₂-Ce (δ), облученных рентгеновским излучением при 300 К (*a*) и 80 К (δ).

что указывает на слабое расщепление t-состояния. В кристаллах CaF2-Gd показано, что при возбуждении светом с энергией выше 2.0 эВ наблюдается фотопроводимость [19], то есть t-состояние находится в зоне проводимости. Менее интенсивная полоса поглощения около 1.5 эВ (рис. 2), по-видимому, обусловлена оптическими переходами между расщепленными, вследствие эффекта Яна-Теллера, уровнями внутри е-состояния (рис. 1). Сравнение спектров поглощения кристаллов CaF₂-Gd и CaF₂-Y, облученных рентгеновским излучением при 80 К (рис. 2), показывает, что они очень похожи, что и следовало ожидать для $d \rightarrow d$ -переходов. В ряде случаев на поглощение $d \rightarrow d$ -переходов накладывается поглощение $d \rightarrow f$ -переходов, тем не менее полоса поглощения 2.3 эВ хорошо прослеживается (например, на рис. За). Широкая полоса поглощения около 4.0 эВ обусловлена V_k -центрами. В 60-е годы прошлого столетия в начале исследования щелочноземельных фторидов с названными выше примесями [13] обнаруженные после радиационного окрашивания полосы поглощения были приписаны $d \rightarrow d$ -переходам, восстановленным до двухвалентного состояния примесным ионам, хотя, по-видимому, не совсем верно. Однако позднее оказалась, что эти центры, не совсем похожи на другие двухвалентные редкоземельные ионы. С одной стороны, они не имели кубическую симметрию, как остальные двухвалентные редкоземельные ионы, а имели симметрию C_{3v} . С другой стороны, они обладали ярко выраженным фотохромным эффектом из-за наличия в своем составе анионной вакансии [7–9], и их стали называть PC⁺-центрами, а переходы стали связывать с наличием анионной вакансии.

$d \rightarrow f$ -переходы

Однако образование PC⁺-центров или через оптическое разрушение PC-центров ультрафиолетовым светом в аддитивно окрашенных кристаллах фтористого кальция [7–9], или при рентгеновском окрашивании кристаллов CaF₂ и SrF₂ при 80 K [14, 15], сопровождалось образованием двухвалентных ионов La, Ce, Gd, Tb, что можно было зарегистрировать по $d \rightarrow f$ -переходам или по регистрации ЭПР-спектров [16]. Особенно наглядные спектры поглощения наблюдались для двухвалентных ионов церия.

На рис. За показаны спектры поглощения кристаллов CaF₂-Ce, облученных при комнатной температуре рентгеновским излучением. В инфракрасной области наблюдаются узкие линии, связанные с $d \rightarrow f$ -переходами Ce²⁺. Такая же структура линий наблюдается и в кристаллах SrF₂-Ce, облученных рентгеновским излучением при 80 К [17]. При нагревании до комнатной температуры Ce²⁺-центры разрушаются в этих кристаллах.

В щелочно-земельных фторидах для названных выше ионов образование РС+ и двухвалентных ионов всегда происходит одновременно, хотя по существующей модели они независимы друг от друга. В кристаллах фтористого бария образования РС⁺ не происходит, но и нет образования двухвалентных ионов из этого ряда, хотя другие редкоземельные двухвалентные ионы образуются при радиационном окрашивании. На рис. 36 показаны спектры поглощения кристаллов BaF₂-Ce, облученных рентгеновским излучением при 80 К. Из рисунка видно, что рентгеновское окрашивание приводит к образованию F- и V_k-центров аналогично тому, что происходит в неактивированных кристаллах фтористого бария [18]. Однако в спектре отсутствует поглощение РС+-центров, и в инфракрасной области нет линий, связанных с образованием двухвалентных ионов церия. К настоящему времени можно констатировать, что создалась парадоксальная ситуация. С одной стороны, в кристаллах CaF₂ и SrF₂, активированных трехвалентными ионами Y, La, Ce, Gd, Tb, Lu, paдиационное или аддитивное окрашивание создает фотохромные РС- и РС+-центры вследствие того, что двухвалентное состояние этих ионов неустойчиво. С другой стороны, наличие $d \rightarrow f$ -переходов и ЭПР-исследований ясно указывает, что двухвалентные ионы также создаются вместе с РС+-центрами.

	CaF ₂	SrF ₂	BaF ₂		CaF ₂	SrF ₂	BaF ₂
La ²⁺				Gd ²⁺	2.0 [19]		
Ce^{2+}	1.6 [23]	1.3 [23]	1.1 [23]	Tb^{2+}	1.7([00]		
Pr ² '				Dy^{2+}	1.76 [22]		
Pm ²⁺				Er^{2+}	1.73 [22]		
Sm ²⁺	1.7 [25]			Tm^{2+}	2.75 [22]	2.08 [22]	1.5 [22]
Eu ²⁺	3.8 [25]	3.8 [26]	2.9 [26]	Yb ²⁺	4.22 [25]	3.0 [24]	
				Lu ²⁺			

Положение уровней двухвалентных ионов относительно зоны проводимости по измерению фотопроводимости (эВ)

Из сказанного выше можно полагать, что в структуру PC⁺-центра входит двухвалентный примесный ион, а все полосы поглощения можно объяснить $d \rightarrow d$ - и $5d^1 \rightarrow f$ -переходами двухвалентного иона. С другой стороны, в состав PC⁺-центра входит анионная вакансия, и окончательно структуру центра можно представить как двухвалентный ион около анионной вакансии: Re²⁺ v_a (рис. 4). Фотохромный эффект при этом заключается в термическом или фотонном переносе электрона с двухвалентного иона на анионную вакансию и наоборот $Re^{3+}F \leftrightarrow Re^{2+}v_a$.

Таким образом вместо трех формально независимых центров PC, PC⁺ и двухвалентных ионов Re^{2+} все экспериментальные данные можно объяснить фототермическим преобразованием внутри одного центра — $Re^{2+}v_a$. При этом можно полагать, что метастабильное состояние $Re^{2+}v_a$ является мелкой ловушкой (рис. 4). Экспериментальные результаты по фотопроводимости в кристаллах CaF₂-Gd показывают, что PC⁺-центр отстоит от зоны проводимости на 2 эB, в то время как PC-центр на 3.1 эB и является более глубокой ловушкой (рис. 4) [19].

Следует отметить, что кроме щелочно-земельных фторидов можно назвать только несколько кристаллов, в которых изучалось двухвалентное состояние этих примесных ионов. В кристаллах BaFCl:La и SrFCl:La исследовалось с помощью оптических методов и ЭПР оптическое преобразование двухвалентных ионов лантана La²⁺ в F-центры и обратно, и хотя объяснение авторов [20, 21] отличается от нашего, тем не менее аналогия с нашими результатами прослеживается и заслуживает внимания.

ЗАКЛЮЧЕНИЕ

Как сказано выше, химическая неустойчивость двухвалентных редкоземельных ионов La, Ce, Gd, Tb, Lu и Y связана с их неспособностью удерживать электрон, потеря которого возвращает их в устойчивое трехвалентное состояние [10]. Образование устойчивых двухвалентных ионов La, Ce, Gd, Tb, Lu и Y (PC⁺-центров) в кристаллах CaF_2 и SrF_2 при радиационном или аддитивном окрашивании достигается образованием около

Рис. 4. Модели РС- (a) и РС⁺- (δ) центров и энергетическая схема их расположения относительно зоны проводимости.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 79 № 2 2015

двухвалентного иона заряженной анионной вакансии $Re^{2+}v_a$, которая понижает основное состояние двухвалентного иона относительно зоны проводимости, тем самым способствуя удержанию электрона около примесного иона.

В таблице приведено положение уровней двухвалентных редкоземельных ионов относительно зоны проводимости, полученных по измерению фотопроводимости. Из таблицы видно, что наиболее глубокие уровни относительно зоны проводимости имеют двухвалентные ионы Eu^{2+} и Yb²⁺. По мере приближения от Eu^{2+} и Yb²⁺ к La²⁺ и Gd²⁺ положение уровней постепенно должно приближаться к зоне проводимости [27]. Однако видно, что для Gd²⁺ уровень расположен глубже, чем для Dy²⁺ и Ho²⁺, а для двухвалентных ионов церия глубина сравнима с глубиной для Sm²⁺.

Следует отметить, что PC⁺-центры ($Re^{2+}v_a$) образуются после радиационного окрашивания при 80 К [14, 15] по механизму, предложенному нами в предыдущей работе [6]; необходимым условием такого образования является тот факт, что для всех упомянутых двухвалентных ионов La, Ce, Gd, Tb, Lu и Y основное состояние – d^1 .

СПИСОК ЛИТЕРАТУРЫ

- Crystals with fluorite structure. Electronic, vibrational, and defect properties // Ed. Hayes W. Oxford: Clarendon Press, 1974.
- Call P.J., Hayes W., Stott J.P., Hughes A.E. // J. Phys. C: Solid State Phys. 1974. V. 7. P. 2417.
- Egranov A.V., Radzhabov E.A., Ivashechkin V.F., Semenova M.A., Vasil'eva I.E. // J. Phys.: Condens. Matter. 2008. V. 20. 465213.
- Egranov A.V., Radzhabov E.A., Nepomnyashchikh A.I., Ivashechkin V.F., Vasil'eva I.E. // Phys. Solid State. 2008. V. 50. P. 1740.
- 5. *Egranov A.V.* // Phys. Status Solidi B. 2014. V. 251. P. 1596.

- Egranov A.V., Sizova T.Yu. // J. Phys. Chem. Solids. 2013. V. 74. P. 530.
- 7. Anderson C., Sabisky E. // Phys. Rev. B. 1971. V. 3. P. 527.
- 8. *Staebler D., Schnatterly S. //* Phys. Rev. B. 1971. V. 3. P. 516.
- 9. Alig R.C. // Phys. Rev. B. 1971. V. 3. P. 536.
- 10. *Cotton S.* // Lanthanide and Actinide Chemistry. Chichester: John Wiley and Sons, Ltd., 2006.
- Alig R.C., Kiss Z.J., Brown J.P., McClure D.S. // Phys. Rev. 1969. V. 186. P. 276.
- Johnson K.E., Sandoe J.N. // J. Chem. Soc. A. 1969. P. 1694.
- O'Connor J.R., Chen J.H. // App. Phys. Lett. 1964. V. 5. P. 100.
- 14. *Sizova T., Radzhabov E. //* IEEE Transact. Nucl. Sci. 2012. V. 59. P. 2098.
- Bugaenko (Sizova) T., Radzhabov E., Ivashechkin V. // Phys. Solid State. 2008. V. 50. P. 1671.
- 16. Herrington J.R., Estle T.L., Boatner L.A., Dischler B. // Phys. Rev. Lett. 1970. V. 24. P. 984.
- 17. Shendrik R.Yu., Myasnikova A.S., Egranov A.V., Radzhabov E.A. // Optics and Spectroscopy. 2014. V. 116. P. 777.
- Nepomnyashchikh A.I., Radzhabov E.A., Egranov A.V., Ivashechkin V.F., Istomin A.S. // Rad. Eff. and Def. Solids. 2002. V. 157. P. 715.
- 19. Heyman P.M. // Appl. Phys. Lett. 1969. V. 14. P. 81.
- 20. Matsarski M., Lovy D., Bill H., Mohnhaupt K.M. // Phys. Rev. B. 2003. V. 68. 205113.
- Garcia-Lastra J.M., Bill H., Barriuso M.T., Aramburu J.A., Moreno M. // Phys. Rev. B: Condens. Matter. 2007. V. 75. 155118.
- 22. Pedrini C., McClure D.S., Anderson C.H. // J. Chem. Phys. 1979. V. 70. P. 4959.
- 23. Pedrini C., Pagost P.O., Madej C., McClure D.S. // J. Phys. 1981. V. 42. P. 323.
- 24. McClure D.S., Pedrini C. // J. Phys. 1985. V. 46. C. 7-397.
- Pedrini C., Rogemond F., McClure D.S. // J. Appl. Phys. 1986. V. 59. P. 1196.
- Moine B., Pedrini C., Courtois B.J. // J. Luminescence. 1991. V. 50. P. 31.
- Dorenbos P. // J. Phys. Condens.Matter. 2003. V. 15. P. 575.

Сдано в набор 27.10.2014	4 г. Подписано к пе	чати 12.01.2015 г. Дата вн	ыхода в свет 27.02.2015 г.	Формат $60 \times 88^{1}/_{8}$					
Цифровая печать Усл. печ. л. 18.0		Усл. кротт. 2.5 тыс.	Учизд. л. 18.0	Бум. л. 9.0					
	Тираж 140 экз.	Зак. 957	Цена свободная						
Учредители: Российская академия наук, Институт прикладной физики РАН									

Издатель: Российская академия наук. Издательство "Наука", 117997 Москва, Профсоюзная ул., 90 Оригинал-макет подготовлен МАИК "Наука/Интерпериодика"

Отпечатано в ППП "Типография "Наука", 121099 Москва, Шубинский пер., 6