СПЕКТРОСКОПИЯ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

УДК 543.42

ПОЛОСЫ С ПЕРЕНОСОМ ЗАРЯДА В КРИСТАЛЛАХ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ ФТОРИДОВ С ПРИМЕСЬЮ ИОНОВ Eu³⁺ И Yb³⁺¹

© 2008 г. Е. А. Раджабов, А. И. Непомнящих, В. Козловский

Институт геохимии им. А.П. Виноградова Сибирского отделения РАН, 664033 Иркутск, Россия Поступила в редакцию 16.02.2008 г.

Спектры поглощения, свечения, возбуждения кристаллов CaF₂, SrF₂, BaF₂ с примесью EuF₃ или YbF₃ исследованы в спектральном диапазоне 1–12 эВ. Во всех случаях при энергиях ниже порога поглощения $4f^{n}-4f^{n-1}5d$ ионов примеси наблюдались интенсивные широкие полосы поглощения (обозначенные как CT₁). Менее интенсивные полосы поглощения (обозначенные как CT₂) с энергиями на 1.5–2 эВ меньше, чем у полос CT₁, обнаружены в кристаллах CaF₂, SrF₂ с примесью EuF₃ или YbF₃. Исследована тонкая структура спектров свечения кристаллов CaF₂ с примесью EuF₃ при возбуждении в полосах CT₁ в спектрах свечения наблюдались несколько Euцентров: C_{4v} , O_h и *R*-агрегаты. При возбуждении в полосах CT₂ обнаружено свечение только дефектов C_{4v} .

PACS: 78.55.Hx, 78.40.Ha

ВВЕДЕНИЕ

Узкие линии в спектрах поглощения и возбуждения в области вакуумного ультрафиолета в кристаллах щелочно-земельных фторидов с примесью ионов редких земель обусловлены переходами $4f^{n}-4f^{n-1}5d$ [1-3]. Помимо этого широкие бесструктурные полосы, частично перекрывающиеся с низкоэнергетическим краем полосы $4f^{n}-4f^{n-1}5d$, обнаружены в кристалла CaF₂-Eu [1], CaF₂-Yb [4]. Позднее эти полосы были классифицированы как полосы с переносом заряда [5], когда переходы происходят с уровней валентной зоны, образованной состояниями 2р окружающих ионов фтора, на состояния 4f примесных редкоземельных ионов. Во многих оксидах с примесью Yb³⁺ обнаружена люминесценция с переносом заряда [6]. Однако в кристаллах CaF₂-Yb люминесценция с переносом заряда не обнаружена [2, 3].

Известные данные о полосах с переносом заряда собраны в работе [7]. Сравнение энергий полос $4f^{n}-4f^{n-1}5d$ с оценочными энергиями полос с переносом заряда [7] позволяет сделать вывод, что только для примесей Eu, Yb в CaF₂ полосы с переносом заряда должны наблюдаться при энергиях меньших, чем полосы $4f^{n}-4f^{n-1}5d$. Для других редкоземельных ионов полосы с переносом заряда должны перекрываться сильными полосами $4f^{n}-4f^{n-1}5d$.

Ионы Eu³⁺ имеют внешнюю электронную конфигурацию $4f^6$ и терм основного состояния 7F_0 . Свечение с возбужденных состояний ⁵D_i конфигурации 4f⁶ приводит к серии узких линий в красной области спектра. Максимальную интенсивность имеют переходы ${}^{5}D_{0}-{}^{7}F_{1}$ с энергией около 2.1 эВ. Присутствие зарядокомпенсирующего иона фтора в щелочно-земельных кристаллах смещает энергии переходов f-f. По спектрам свечения и возбуждения установлены центры симметрии C_{4_V}, C_{3_V} и O_h в кристаллах CaF₂-Eu [8, 9], в которых междоузельный фтор располагается в ближайшей позиции (NN), в следующей позиции (NNN) либо значительно удален от иона европия. Величина смещения линии ${}^{5}D_{0}-{}^{7}F_{1}$ из-за взаимодействия иона европия с соседним фтором максимальна в кристаллах CaF2 вследствие наименьшего расстояния между ионом европия и междоузельным фтором. Европиевые центры C_{3_V} не наблюдались в кристаллах CaF₂, центры C_{4v} не наблюдались в кристаллах BaF₂, кубические центры O_h наблюдались во всех кристаллах.

Целью работы является исследование переходов с переносом заряда в кристаллах CaF_2 , SrF_2 , BaF_2 с примесью ионов редких земель.

ОБЪЕКТЫ ИССЛЕДОВАНИЙ И МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы выращены в вакууме в графитовом тигле методом Стокбаргера. Графитовый тигель состоял из трех цилиндрических полостей диаметром 10 мм и длиной 80 мм, так что три кри-

¹ Доклад на XIII Феофиловском симпозиуме "Спектроскопия кристаллов, активированных редкоземельными ионами и ионами переходных металлов" (Иркутск, июль 2007).

Рис. 1. Спектры поглощения кристаллов CaF₂ (a), SrF₂ (б) и BaF₂ (в) с примесью 0.1 мол. % EuF₃; T = 295 (1), 80 K (2).

сталла 10×50 мм с разной концентрацией примеси выращивались одновременно. Первоначально выращивались относительно большие кристаллы с добавлением CdF₂ для удаления кислорода. Далее часть выращенного кристалла использовалась для выращивания кристаллов с примесями. Концентрация примеси варьировалась от 0.001 мол. % до нескольких молярных процентов.

Спектры в диапазоне 4–12 эВ измерены с использованием вакуумного монохроматора ВМР2. Водородная разрядная лампа с окном из фтористого магния (прозрачного до 10.9 эВ) использовалась как источник вакуумного ультрафиолета.

Спектры свечения измерены с помощью дифракционного монохроматора МДР2 при 78 К. Предельное разрешение монохроматора было 0.4 нм, что достаточно для сильно расщепленных линий в кристаллах CaF_2 . Некоторые спектры свечения были измерены также при 10 К. Однако из-за невысокого спектрального разрешения спектры свечения оказались одинаковыми. Для простоты будем использовать обозначение переходов 4*f*-5*d* вместо более полного обозначения $4f^{n}-4f^{n-1}5d$.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Поглощение

Полосы поглощения 4f-5d наблюдались в CaF₂-Eu при энергиях выше 8.4 эВ [1]. Низкоэнергетическая полоса переходов 4f-5d немного смещается в сторону высоких энергий в ряду CaF₂-SrF₂-BaF₂. Этот результат находится в соответствии с уменьшением величины кристаллического поля в этом ряду.

Во всех трех кристаллах наблюдались широкие полосы, примыкающие к краю поглощения 4f-5d (рис. 1). Полосы увеличиваются пропорционально концентрации примеси. Впервые широкие полосы наблюдались в кристаллах CaF₂–Eu, CaF₂–Yb [1]. Позднее полосы в CaF₂ интерпретированы как полосы переноса заряда [5]. Максимум полосы смещается в низкоэнергетическую сторону в ряду CaF₂–SiF₂–BaF₂, что находится в соответствии с уменьшением величины запрещенной зоны. Обозначим эти полосы как CT₁.

В кристаллах CaF_2 -Eu, SrF_2 -Eu обнаружена также слабая полоса поглощения с максимумом в области 6–7 эВ (рис. 1). В кристаллах BaF_2 такой полосы поглощения не обнаружено. Подобно полосам CT_1 эта полоса поглощения увеличивается с ростом концентрации европия. Мы обозначили эту полосу как CT_2 . Позднее покажем, что она также является полосой с переносом заряда. При 80 К полосы с переносом заряда проявляются более отчетливо, полосы CT_1 смещаются в высокоэнергетическую сторону, полосы CT_2 остаются на месте (рис. 1).

Спектры поглощения кристаллов с примесью YbF_3 похожи на спектры кристаллов с примесью EuF_3 (рис. 2). Линии переходов 4f-5d слегка смещаются в сторону высоких энергий в ряду от CaF_2 до BaF_2 . Широкая полоса CT_1 смещается в сторону низких энергий в этом ряду. Слабая полоса поглощения CT_2 также наблюдается, хотя ее относительная величина меньше, чем в случае с примесью EuF_3 (сравни рис. 1 и 2). Положения полос слабо смещаются при понижении температуры до 80 К.

Энергии всех наблюдаемых полос собраны в таблице.

Рис. 2. Спектры поглощения кристаллов CaF₂ (a), SrF₂ (б) и BaF₂ (в) с примесью 0.1 мол. % YbF₃ при комнатной температуре, штриховой линией показана расчетная гауссова кривая для полосы CT₁. Примесь YbF₃ (в мол. %): (a) I - 0.03, 2 - 0.1; (б) I - 0.014, 2 - 0.15; (в) - I - 0.02, 2 - 0.1.

8

Е, эВ

9

10

Свечение, возбуждение

При релаксации из состояния переноса заряда электрон переходит с редкоземельного иона на состояния окружающих ионов фтора, находящиеся в верхней части валентной зоны. При этом ион редкой земли оказывается в одном из возбужденных состояний f. Поэтому линии f-f редкоземельного иона также наблюдаются при возбуждении в полосу переноса заряда [2, 3]. Отсутствие свечения 5d-4f при возбуждении в широкую полосу поглощения (возбуждения) является одним из критериев для идентификации полосы с переносом заряда.

Спектры возбуждения красной люминесценции Eu *f*-*f* в области переходов с переносом заряда

Рис. 3. Спектры возбуждения кристаллов CaF₂ (сплошная кривая), SrF₂ (штриховая кривая) и BaF₂ (пунктир) с примесью 0.1 мол. % EuF₃. Свечение Eu³⁺ регистрировалось в широкой области (2.1 ± 0.03) эВ при температуре 78 K.

состоят из двух полос в кристаллах CaF_2 , SrF_2 и из одной полосы в кристаллах BaF_2 . Спектры возбуждения подобны спектрам поглощения. Спектры возбуждения кристаллов CaF_2 -Eu, SrF_2 -Eu кроме полосы CT_1 содержат также полосу CT_2 меньшей интенсивности (рис. 3). Спектры возбуждения кристаллов BaF_2 -Eu содержат только одну полосу CT_1 (рис. 3).

Для того чтобы установить симметрию Euцентров, излучающих при возбуждении в полосы с переносом заряда, были измерены спектры свечения с разрешением, достаточным для разделения индивидуальных линий. Наиболее интенсивными линиями являются линии перехода ${}^{5}D_{0}-{}^{7}F_{1}$. Поэтому они были выбраны для выявления симметрии центров. Спектры свечения кристаллов СаF₂-Еи³⁺ значительно отличаются при возбуждении в полосу CT₁ или в CT₂ (рис. 4). Линии 16832, 17981 см⁻¹ принадлежат центрам C_{4_V} , линия 16937 см⁻¹ принадлежит центрам O_h, линия 16878 см⁻¹ принадлежит так называемым *R*-агрегатным центрам [8]. При возбуждении кристаллов CaF₂-Еи в полосу CT₂ наблюдались линии свечения центров С4v, тогда как при возбуждении в полосу CT_1 наблюдались линии как C_{4v} , так и O_h и *R*-центров.

Люминесценция с переносом заряда весьма эффективна в кристаллах оксидов с примесью YbF_3 , но не наблюдалась в CaF_2 –Yb [3]. Мы также не смогли обнаружить люминесценцию с перено-

Энергии (в эВ) широких полос поглощения в кристаллах щелочно-земельных фторидов с примесью EuF_3 , YbF₃ при 80 K (оценочные энергии полос с переносом заряда E_{est} взяты из [7])

Кристалл	$E(\mathrm{Eu}^{3+})$	$E(Yb^{3+})$	$E_{\rm est}({\rm Eu}^{3+})$	$E_{\rm est}({\rm Yb^{3+}})$
CaF ₂	8.35	8.7	8.2	8.7
	6.85	7.2		
SrF_2	7.95	8.50	7.6	8.2
	6.65	6.9		
BaF ₂	7.70	8.14	7.4	7.9

сом заряда в кристаллах CaF_2 -Yb, SrF_2 -Yb, BaF_2 -Yb при возбуждении в полосах CT_1 и CT_2 .

ОБСУЖДЕНИЕ

В данной работе мы распространили исследование переходов Yb³⁺ и Eu³⁺ с переносом заряда на кристаллы SrF₂, BaF₂, а также обнаружили еще одну полосу в CaF₂, которую можно приписать этим переходам. Полосы переноса заряда в кристаллах SrF₂ и BaF₂ лучше отделяются от края поглощения 4*f*-5*d*, чем в CaF₂ (сравни рис. 1 и 2). Такое разделение вызвано тем, что в ряду CaF₂-SrF₂-BaF₂ полосы CT₁ переноса заряда смещаются в сторону низких энергий, и одновременно край поглощения 4*f*-5*d* немного смещается в высокоэнергетическую сторону. Эксперименталь-

Рис. 4. Спектры свечения кристаллов CaF₂ с примесью 0.1 мол. % EuF₃ в области переходов ${}^{5}D_{0}-{}^{7}F_{1}$ при 78 К. Кристаллы возбуждались светом в области полос CT₁ и CT₂, энергия фона 7.7 (*1*), 6.6 эВ (2). Спектральная ширина щели монохроматора 0.4 нм. Положения линий C_{4v} , O_{h} взяты из [8].

ные значения энергий полос переноса заряда находятся в соответствии со значениями, рассчитанными полуэмпирически [7]. Расчет базируется на экспериментальных энергиях переноса заряда в CaF_2 –Yb, CaF_2 –Eu. Расчетные энергии полос в кристаллах SrF_2 и BaF_2 на 0.2–0.3 эВ меньше, чем наши экспериментальные энергии (таблица).

Другая полоса поглощения СТ₂ меньшей интенсивности обнаружена нами в кристаллах CaF_2 и SrF₂ с примесью EuF₃ или YbF₃ (рис. 1, 2). Полоса СТ₂ также видна и в спектрах возбуждения красного свечения $Eu^{3+} f - f$ (рис. 3). Полоса CT_1 в спектрах кристаллов SrF_2 и BaF_2 несомненно обусловлена так же, как и в кристаллах CaF₂, переходами с переносом заряда. Полоса СТ₂, вероятно, также относится к полосам с переносом заряда. Энергия полос СТ₂ на 1.5–2 эВ меньше, чем энергия полос СТ₁. Можно предположить, что в центрах СТ₂ переходы происходят с междоузельного зарядокомпенсирующего фтора на ион редкой земли, в то время как переходы в центрах CT₁ обусловлены переносом электрона с окружающих узельных ионов фтора на ион редкой земли. Интенсивность таких переходов для ближайшего

расположения пары $\text{Re}^{3+}-\text{F}_i^-$ должна быть в несколько раз меньше, так как на один междоузельный ион фтора приходится 8 узельных ионов фтора. При нахождении фтора в следующем междоузлии (NNN) интенсивность таких переходов становится многократно меньше. В кристаллах BaF₂, как известно, наблюдаются только NNN-па-

ры $\text{Re}^{3+}-\text{F}_i^-$ и в соответствии с этим нет полос CT_2 в спектрах поглощения (рис. 1, 2) или возбуждения (рис. 3). Если наше предположение верно, то спектры свечения должны различаться при возбуждении в полосы CT_1 или в CT_2 .

Значительные различия действительно обнаружены в спектрах красного свечения Eu³⁺ при возбуждении в полосу CT₁ или в полосу CT₂ (рис. 4). В кристаллах CaF₂ при возбуждении в CT₂ наблюдалось свечение только центров C_{4v} , тогда как при возбуждении в полосу CT₁ наблюдалось свечение C_{4v} -, O_h - и агрегатных *R*-центров. Таким образом, совокупность экспериментальных результатов позволяет достаточно уверенно полагать, что полосы поглощения и возбуждения CT₂ обусловлены переходами в близких (NN) парах Re³⁺-F_i⁻.

Люминесценция с переносом заряда известна для многих оксидных кристаллов с примесью Yb [6, 11]. Однако эта люминесценция не обнаружена в кристаллах CaF_2 –Yb и очень слаба в кристаллах LiYF₄ [2]. Мы также не смогли обнаружить

Рис. 5. Энергии полос CT_1 , CT_2 и 4*f*–5*d*(e_g) трехвалентных редкоземельных ионов в кристаллах $CaF_2(1)$, $SrF_2(2)$ и $BaF_2(3)$. Оценочные энергии полос CT_1 взяты из работы [7]. Энергии для La^{3+} полос CT_2 взяты из работы [10]. Энергии CT_2 грубо оценены как энергии CT_1 минус 1.2 эВ. Вертикальные пунктирные линии – края экситонного поглощения BaF_2 – CaF_2 .

люминесценцию с переносом заряда в CaF_2 —Yb, SrF_2 —Yb, BaF_2 —Yb при возбуждении в полосах CT_1 или CT_2 при температуре 10 К. По всей видимости, "мягкая" анионная подрешетка этих кристаллов способствует сильной релаксации центра в возбужденном состоянии и тушению люминесценции с переносом заряда.

Для оценки возможности наблюдения изолированных полос с переносом заряда мы нанесли на один график энергии полос с переносом заряда (рассчитанных в [7]) в зависимости от энергий переходов 4f-5d редкоземельных ионов Re³⁺ (рис. 5). Данные упорядочены по возрастанию энергий полос с переносом заряда СТ₁. Из результатов, представленных на этом графике, видно, что только для ионов Eu и Yb энергии полос переноса заряда меньше, чем энергии первых переходов 4f-5d, и только для этих ионов полосы с переносом заряда спектрально разделены с областью переходов 4f-5d. Для ионов Sm, Tm полосы с переносом заряда СТ₁ попадают в область переходов 4f-5d, для остальных редкоземельных ионов полосы с переносом заряда уходят в область экситонного и межзонного поглощений (рис. 5). Полосы СТ2 для ряда редкоземельных ионов попадают в область поглощения 4f-5d. Мы безуспешно пытались обнаружить полосы СТ2 в области между расщепленными полосами 4f-5d по свечению только C_{4v} -центров Eu³⁺. По всей видимости, даже в промежутке между расщепленными кристаллическим полем полосами 4f-5d поглощение 4f-5d превалирует над поглощением CT_2 .

ЗАКЛЮЧЕНИЕ

Интенсивные полосы поглощения (и возбуждения) в SrF₂, BaF₂ с примесью EuF₃ или YbF₃, расположенные ниже края поглощения 4f-5d, принадлежат переходам с переносом заряда CT₁, когда электрон переносится с окружающих ионов фтора на центральный ион редкой земли.

Менее интенсивные полосы поглощения (и возбуждения) в кристаллах CaF_2 , SrF_2 с примесью EuF_3 или YbF₃ в области 6–7.5 эВ принадлежат переходам с переносом заряда CT_2 другого типа, когда электрон переносится с зарядокомпенсирующего междоузельного иона фтора, находящегося в ближайшей NN-позиции, на ион редкой земли.

Авторы благодарят В.Ф. Ивашечкина за руководство выращиванием кристаллов, исследованных в этой работе. Работа выполнена при поддержке РФФИ (проект 07-02-01057).

СПИСОК ЛИТЕРАТУРЫ

 Szczurek T., Schlesinger M. // Rare Earth Spectroscopy. Proc. Int. Symp. on Rare Eartsh Spectroscopy. Wroclav. Poland. 1984 / Ed. by Jezowska-Trzebiatowska B. Legendziewicz J., Strek W. Singapore: World Scientific, 1985. P. 309–330.

- van Pieterson L., Reid M.F., Wegh R.T., Soverna S., Meijerink A. // Phys. Rev. B. 2002. V. 65. P. 045113.
- 3. van Pieterson L., Reid M.F., Burdick G.W., Meijerink A. // Phys. Rev. B. 2002. V. 65. P. 045114.
- 4. Schlesinger M., Szczurek T., Wade M.K., Drake G.W.F. // Phys. Rev. B. 1978. V. 18. P. 6388.
- 5. Blasse G. // J. Phys. Chem. Solids. 1989. V. 50. P. 99.
- 6. van Pieterson L., Heeroma M., de Heer E., Meijerink A. // J. Luminesc. 2000. V. 91. P. 177.
- 7. Dorenbos P. // J. Phys. Cond. Matter. 2003. V. 13. P. 8417.

- Wells J.R., Reeves R.J. // Phys. Rev. B. 2001. V. 64. P. 035102.
- Jouart J.P., Bissieux C., Mary G., Egee M. // J. Phys. C. 1985. V. 18. P. 1539.
- 10. Radzhabov E., Kirm M., Nepomnyashchikh A.I. // Phys. Stat. Sol. A. 2007. V. 204. P. 670.
- Guerassimova N., Dujardin C., Garnier N., Pedrini C., Petrosyan A.G., Kamenskikh I.A., Mikhailin V.V., Shpinkov I.N., Spassky D.A., Ovanesyan K.L., Shirinyan G.O., Chipaux R., Cribier M., Mallet J., Meyer J.P. // Nucl. Insturm. Meth. Phys. Res. 2002. V. 486. P. 278.