ISSN 1063-7834, Physics of the Solid State, 2008, Vol. 50, No. 9, pp. 1671–1673. © Pleiades Publishing, Ltd., 2008. Original Russian Text © T.Yu. Bugaenko, E.A. Radzhabov, V.F. Ivashechkin, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 9, pp. 1607–1609.

PROCEEDINGS OF THE XIII FEOFILOV SYMPOSIUM "SPECTROSCOPY OF CRYSTALS DOPED BY RARE-EARTH AND TRANSITION-METAL IONS"

(Irkutsk, July 9–13, 2007)

Thermal Decay of Photochromic Color Centers in CaF₂, SrF₂, and BaF₂ Crystals Doped by La and Y Impurities

T. Yu. Bugaenko, E. A. Radzhabov, and V. F. Ivashechkin

Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1A, Irkutsk, 664033 Russia e-mail: eradzh@igc.irk.ru

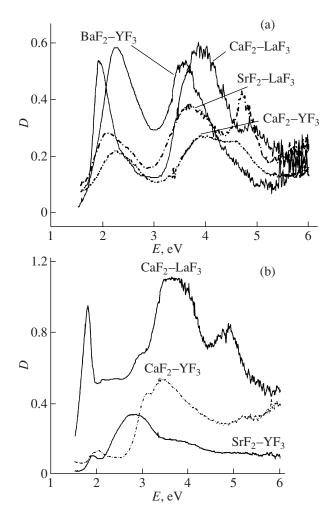
Abstract—The absorption spectra of photochromic centers in CaF₂, SrF₂, and BaF₂ crystals doped by La and Y impurities and thermal decay of the centers in the temperature range 80-600 K are investigated. Under lowtemperature x-ray irradiation, ionized photochromic color (PC⁺) centers are generated in La- and Y-doped CaF₂ crystals and in a La-doped SrF₂ crystal. It is revealed that, upon heating of the CaF₂-LaF₃ crystal, PC⁺ centers are transformed into photochromic color (PC) centers. In the SrF_2 -YF₃ crystal irradiated at room temperature, photochromic color centers are generated as well. All color centers decay at a temperature of approximately 600 K. After irradiation of the BaF₂–YF₃ crystal at a temperature of 80 K, absorption bands are observed at energies of 2.25 and 3.60 eV, which are related to neither PC centers nor PC⁺ centers.

PACS numbers: 78.70.-g, 78.70.Dm

DOI: 10.1134/S1063783408090151

1. INTRODUCTION

Barium fluoride BaF₂ is known as the fastest inorganic scintillator. An important factor limiting the use of the BaF₂ fluoride as a fast scintillator is that it has an intense slow luminescence component (approximately 620 ns) due to self-trapped anion excitons. The suppression of the undesirable prolonged luminescence in barium fluoride at a wavelength of 310 nm with retention of the specific light yield of the fast component can be achieved by introducing rare-earth impurities into the matrix of the crystal [1]. It is known that additive coloration of the calcium fluoride CaF₂ doped by La, Ce, Gd, Tb, Lu, and Y impurities, as well as radiationinduced coloration of the CaF₂, SrF₂, and BaF₂ fluorides doped by yttrium, results in the formation of photochromic color (PC) centers [2, 3]. A photochromic color center consists of two electrons captured by a complex nucleus composed of a rare-earth ion and the nearest neighbor anion vacancy [4]. Colored crystals exhibit a photochromic effect; i.e., they change color under exposure to light. This process is accompanied by a reversible transformation of a PC center into an ionized PC (PC⁺) center [2].


The objective of this work was to investigate the optical absorption of photochromic color centers and their thermal decay at temperatures in the range from 80 to 600 K in radiation-colored crystals CaF₂, SrF₂, and BaF₂ doped by trivalent ions La³⁺ and Y³⁺.

2. SAMPLE PREPARATION AND EXPERIMENTAL TECHNIQUE

Calcium, strontium, and barium fluoride crystals doped by lanthanum and yttrium impurities served as the object of our investigation. The concentration of La and Y impurities was 0.1 mol % in calcium fluoride and approximately 1.0 mol % in strontium and barium fluorides. The crystals were grown under vacuum in a graphite crucible according to the Stockbarger technique. The absorption spectra were measured on a Specord UV–VIS spectrophotometer in the range 1.5– 6.0 eV. The samples were exposed to x-ray irradiation (35 kV, 20 mA, Pd) at room temperature and at 80 K.

3. RESULTS AND DISCUSSION

Figure 1 shows the absorption spectra of the CaF_2 , SrF₂, and BaF₂ crystals doped by LaF₃ and YF₃ impurities and irradiated at temperatures of 80 and 300 K. The energies of the observed bands are presented in the table. The absorption bands in the spectra of the CaF₂-LaF₃ and CaF₂-YF₃ crystals irradiated at room temperature (Fig. 1b) are shifted toward lower energies with respect to the bands observed in the spectra of the same crystals irradiated at a temperature of 80 K (Fig. 1a). In the spectra of the additively colored crystals of calcium fluoride doped by La and Y impurities, absorption bands of photochromic color centers were observed at energies of 1.6, 3.1, and 4.8 eV (CaF₂-LaF₃) and 2.1, 3.1, and 3.6 eV (CaF_2 -YF₃) [2]. It is known that, under exposure to light, PC centers are transformed into PC⁺

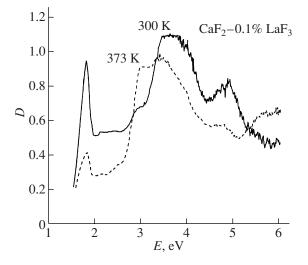


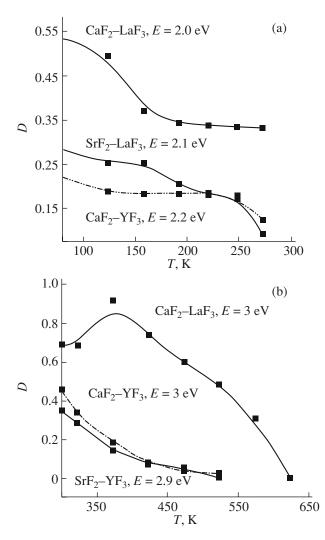
Fig. 1. Absorption spectra of the CaF_2 , SrF_2 , and BaF_2 crystals doped by LaF_3 and YF_3 impurities: (a) after irradiation at a temperature of 80 K (the spectra were measured at 80 K) and (b) after irradiation at a temperature of 300 K (the spectra were measured at 300 K).

centers. The absorption bands of PC⁺ centers are shifted toward higher energies with respect to the absorption bands of PC centers. In CaF₂–LaF₃ crystals, the absorption bands of PC⁺ centers were observed at energies of 1.8, 3.8, and 4.9 eV [2]. The absorption bands observed

Energies of absorption bands in the spectra of CaF_2 , SrF_2 , and BaF_2 crystals doped with LaF_3 and YF_3 impurities and irradiated at temperatures of 80 and 300 K

80 K		300 K	
crystal	E, eV	crystal	E, eV
CaF ₂ –LaF ₃	2, 3.9, 4.8	CaF ₂ –LaF ₃	1.8, 3.7, 4.8
CaF ₂ –YF ₃	2.2, 3.9, 4.6	CaF ₂ –YF ₃	2, 3, 3.5
SrF ₂ –LaF ₃	2.1, 3.7, 4.7	SrF ₂ –LaF ₃	1.9, 2.9, 3.7
BaF ₂ –YF ₃	2.25, 3.6		

Fig. 2. Absorption spectra of the CaF₂–LaF₃ crystal irradiated at a temperature of 300 K and heated to 373 K. The spectra were measured at T = 300 K.


upon irradiation of the CaF_2-LaF_3 crystal at a temperature of 80 K in our study (see table) are assigned to PC⁺ centers. Upon heating of the CaF_2-LaF_3 crystal, the spectrum is shifted toward lower energies, which indicates a transformation of color centers: PC⁺ centers are transformed into PC centers (Fig. 2).

The analysis of the absorption spectra of the CaF_{2} -YF₃ crystal has demonstrated that irradiation of the crystal at 80 K gives rise to PC⁺ centers (Fig. 1a), whereas irradiation at 300 K results in the appearance of the bands attributed to PC centers (Fig. 1b).

The energies of the absorption bands of the SrF_2 -LaF₃ crystal are close to those of the CaF₂-LaF₃ crystal irradiated at 80 K (see table); i.e., the irradiation of the SrF_2 -LaF₃ crystal results in the formation of PC⁺ centers. The crystal becomes colored only at a temperature of 80 K.

Upon radiation-induced coloration of the SrF_2-YF_3 crystal, absorption bands of photochromic color centers were observed at energies of 2.0, 2.6, and 3.6 eV [3]. Our studies revealed that the absorption spectra of the SrF_2-YF_3 crystal irradiated at room temperature contain bands at energies of 1.9 and 2.9 eV and a weak maximum at 3.7 eV. These bands are attributed to PC centers. In contrast to the data reported in [3], our SrF_2-YF_3 crystals did not become colored at 80 K.

Irradiation of the BaF_2-YF_3 crystal leads to the appearance of absorption bands at energies of 2.25 and 3.60 eV. These bands are attributed to neither PC centers (1.7, 2.2, 2.7, 4.7 eV [3]) nor PC⁺ centers. Similar results were obtained earlier in studies of BaF_2-LaF_3 crystals [5]. The nature of these bands remains unknown.

Fig. 3. Thermal decay of photochromic color centers in CaF_2-LaF_3 , CaF_2-YF_3 , SrF_2-LaF_3 , and SrF_2-YF_3 crystals irradiated at temperatures of (a) 80 and (b) 300 K.

Figure 3a shows the thermal decay curves of PC⁺ centers in the CaF_2-LaF_3 , CaF_2-YF_3 , and SrF_2-LaF_3 crystals irradiated at 80 K. Upon irradiation of the CaF_2-LaF_3 crystal at 300 K and its subsequent heating to 373 K, PC⁺ centers are transformed into PC centers

and, then, the latter centers decay. A similar decay of PC centers is observed in the CaF_2 -YF₃ and SrF_2 -YF₃ crystals irradiated at 300 K (Fig. 3b).

4. CONCLUSIONS

Thus, it has been found that x-ray irradiation at 80 K leads to the formation of PC⁺ centers in La- and Y-doped CaF₂ crystals and in a La-doped SrF₂ crystal. At temperatures in the ranges 350–450 K (in CaF₂–LaF₃) and 250–350 K (in CaF₂–YF₃), PC⁺ centers are transformed into PC centers. Photochromic color centers are also generated in the SrF₂–YF₃ crystal irradiated at room temperature, whereas the crystal irradiated at 80 K does not become colored. All color centers decay upon heating of the crystals to approximately 600 K.

For the BaF_2 -YF₃ crystal irradiated at 80 K, absorption bands are observed at energies of 2.25 and 3.60 eV. These absorption spectra are assigned to neither PC centers nor PC⁺ centers.

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 07-02-01057).

REFERENCES

- B. P. Sobolev, E. A. Krivandina, S. E. Derenzo, W. W. Moses, and A. C. West, in *Proceedings of the MRS Symposium on Scintillator and Phosphor Materials Pittsburgh, PA, United States, 1994* (Pittsburgh, 1994), Vol. 348, p. 277.
- D. L. Staebler and S. E. Schnatterly, Phys. Rev. B: Solid State 3, 516 (1971).
- J. R. O'Connor and J. H. Chen, Phys. Rev. 130, 1790 (1963).
- 4. *Crystals with Fluorite Structure*, Ed. by W. Hayes (Clarendon, Oxford, 1974).
- E. A. Radzhabov, A. Shalaev, and A. I. Nepomnyashikh, Radiat. Meas. 29, 307 (1998).

Translated by V. Artyukhov