ХVІ МЕЖДУНАРОДНЫЙ ФЕОФИЛОВСКИЙ СИМПОЗИУМ

УДК 535.34

РАДИОЛИЗ КРИСТАЛЛОВ LaF₃ С ПРИМЕСЬЮ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

© 2016 г. Е.А. Раджабов*,**

* Институт геохимии им. А.П.Виноградова Сибирского отделения РАН, 664033 Иркутск, Россия ** Иркутский университет, 664003 Иркутск, Россия E-mail: eradzh@igc.irk.ru Поступила в редакцию 28.04.2016 г.

Исследованы спектры поглощения кристаллов LaF₃, беспримесных и с примесью редкоземельных фторидов (YF₃, CeF₃, NdF₃, PrF₃, SmF₃, EuF₃, GdF₃, TbF₃, DyF₃, HoF₃, ErF₃, TmF₃, YbF₃, LuF₃). По виду спектров поглощения облученных кристаллов все примеси делятся на две группы. В спектрах

кристаллов с примесями Nd, Sm, Tm, Yb помимо дырочной полосы F_3^- при 200 нм обнаруживаются слабые полосы, которые принадлежат центрам RE^{2+} – анионная вакансия. В спектрах LaF₃ с при-

месями Y, Ce, Pr, Gd, Tb, Dy, Ho, Er, Lu помимо полос дырочных центров (F_3^- при 200 нм и V_{kA} при 320 нм) обнаружены полосы сравнимой интенсивности, которые можно приписать центрам RE^{3+} –F. Предварительные квантово-химические расчеты и оценки энергии уровней в зонной схеме подтверждают этот вывод.

DOI: 10.7868/S0030403416100238

ВВЕДЕНИЕ

Фторид лантана характеризуется высокой плотностью (5.94 г/см³) и отсутствием гигроскопичности. Решетка LaF₃ изоморфна для трехвалентных редкоземельных ионов. Спектроскопия трехвалентных лантаноидов в LaF₃ исследована подробно (см. обзор [1]). Спектры двухвалентных лантаноидов в LaF₃ и родственных решетках исследованы слабо [2, 3]. Изучены оптические спектры радиационных дефектов F, V_k [4, 5], F₃⁻ [6] в кристалле LaF₃. Материал LaF₃-RE³⁺ (RE – редкоземельные ионы) является перспективным для лазерных и сцинтилляционных приложений. Однако радиолиз кристаллов LaF₃, легированных редкоземельными ионами, изучен недостаточно [7].

МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы фторидов выращивались методом Стокбаргера в трехствольном графитовом тигле в вакууме¹. Несколько процентов CdF_2 добавлялось в сырье для очистки от примеси кислорода. Концентрация примеси фторидов лантаноидов в шихте была 0.01, 0.1 и 0.3 мол. %. В спектрах по-

глощения некоторых кристаллов LaF₃ обнаружены полосы в области длин волн 192, 206, 217, 228 нм и наиболее интенсивная полоса при 246 нм, принадлежащие ионам Ce³⁺ [8]. Следовая концентрация церия в кристаллах LaF₃ была оценена путем сравнения их спектров поглощения со спектром LaF₃-0.01% CeF₃ и составляла 0.001– 0.005 мол. %. В синтезированном в нашей лаборатории исходном сырье и выращенных из него кристаллах LaF₃ концентрация примеси церия была существенно ниже.

Спектры поглощения в области 190–3000 нм измерялись на спектрофотометре Perkin-Elmer Lambda-950². Радиационное облучение производилось с помощью рентгеновской трубки БХВ-12 при напряжении 40 кВ и токе 20 мА в течение 40 мин. Образцы размещались непосредственно на выходном окне рентгеновской трубки и окрашивались с двух сторон.

Для оценки влияния соседней анионной вакансии на оптические переходы в ионах Sm²⁺ были проведены неэмпирические расчеты оптических переходов небольшого кластера кристалла LaF₃. Ненарушенный кластер состоял из центрального фтора и ближайших сфер окружающих

¹ Кристаллы выращены В.А. Козловским, сырье LaF₃ синтезировано О.Н. Соломеиным.

² Оборудование изотопно-геохимического центра коллективного пользования ИГХ СО РАН.

Рис. 1. Спектры поглощения кристаллов LaF₃ с редкоземельными примесями, наведенные ренттеновским излучением: а – спектры кристаллов первой группы, б – спектры кристаллов второй группы.

ионов – La_4F_8 с зарядом 4+. Волновые функции La и F взяты из базиса LANL2DZ, волновые функции самария взяты из базиса SDD, в котором волновые функции *f*-орбиталей представлены более полно. Расчеты производились с использованием лицензионного пакета квантовохимических программ "Gaussian 03" [9] методом функционала плотности (DFT). В кристаллической решетке LaF₃ смешанные слои ионов La и F перемежаются двумя слоями F. Координаты ионов решетки LaF₃ взяты из работы [10]. Начало координат выбрано на ионе фтора, поскольку волновые функции F-центра диффузны и для правильной их передачи нужно применять несколько слоев ближайшего окружения.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Под действием рентгеновского облучения в кристаллах фторида лантана с примесью редкоземельных ионов наводятся несколько полос поглощения (рис. 1). Сильная полоса около 200 нм принадлежит поглощению молекулярных ионов F_{3}^{-} [6]. В спектрах наблюдается также полоса при 330 нм. В кристаллах LaF₃, облученных при низких температурах, широкая полоса при 330 нм, разрушавшаяся при температуре 115 К, приписана V_k-центрам [4]. Автолокализованные дырки в CaF₂. стабилизированные редкоземельными ионами – F₂(Tm) с полосой поглощения при 320 нм, устойчивы при комнатной температуре и разрушаются при нагреве до 100°С [11]. Возможно, полосы около 330 нм в LaF₃-RE принадлежат стабильным при комнатной температуре дырочным центрам V_k -типа (обозначим их V_{kA}). Полосы поглощения 500-550 нм (рис. 1) очевидно приналлежат F-подобным центрам [4]. Все наведенные полосы поглощения усилились в несколько раз при увеличении концентрации примесей от 0.01 до 0.3 мол. %.

Спектры поглощения всех кристаллов, наведенные рентгеновским излучением при комнатной температуре, можно разделить на две группы. Первая группа включает в себя кристаллы, легированные Y, Ce, Gd, Tb, Ho, Er, Lu (рис. 1). Спектры поглощения этих кристаллов характеризуются полосами при 520–550 (F-центры), 330 (V_{kA}) и 200 нм (F_3^-). Соотношение интенсивностей полос поглощения центров V_{kA} и F_3^- отличается в разных кристаллах. Из-за полос поглощения в области 520–550 нм кристаллы этой группы окрашены в розовый цвет. Интенсивности полос дырочных (V_{kA} , F_3^-) и электронных центров примерно одинаковы (рис. 1).

Кристаллы второй группы (Nd, Sm, Yb, Tm) отличаются сильной полосой поглощения при 200 нм (центры F₃-), отсутствием полосы при 330 нм и на порядок величины менее интенсивными полосами в ультрафиолетовой и видимой областях спектра (рис. 2, 3). Под действием рентгеновского облучения небольшая доля сопутствующих ионов Се³⁺ меняла валентность, что проявлялось в спектрах наведенного поглощения (рис. 1, 2, провал при 246 нм). Из-за слабого поглощения в видимой области кристаллы почти бесцветны. Параллельно с образованием ультрафиолетовой полосы центров F₃ в кристаллах LaF₃ с примесью YbF₃, TmF₃, SmF₃, NdF₃ наводятся также слабые полосы в области 300-800 нм, которые будем называть длинноволновыми полосами. Каждая примесь образует свои характерные длинноволновые полосы поглощения.

При выращивании кристаллов LaF_3 с примесью SmF_3 нами получены как кристаллы, содержащие только трехвалентные ионы самария, так и кристаллы, в которых часть самария переведена

Рис. 2. Спектры поглощения кристаллов LaF₃ с редкоземельными примесями второй группы, наведенные рентгеновским излучением.

в двухвалентное состояние [3]. Спектры поглощения выращенных кристаллов LaF_3-Sm^{2+} и кристаллов LaF_3-Sm^{3+} после рентгеновского облучения одинаковы, хотя степень преобразования Sm^{3+} в Sm^{2+} невелика (рис. 3). В облученных кристаллах LaF_3-Yb^{3+} обнаружены слабые полосы при 330, 370 нм, которые можно приписать полосам ионов Yb^{2+} [12]. Можно полагать, что длинноволновые полосы поглощения обусловлены образованием центров, содержащих двухвалентные редкоземельные ионы.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Для моделирования F-центра в кластере La_4F_8 был удален центральный атом фтора. Расчет F-центра показал, что в запрещенной зоне появляется локальный уровень, занятый одним электроном. Орбиталь этого электрона локализована в области анионной вакансии (рис. 4). Оптические переходы F-центра находятся в области 350–620 нм (сила осциллятора около 0.2), что довольно близко к экспериментальным значениям 460, 590 и 650 нм [4].

Основной целью предварительного моделирования было выяснение того, где будет располагаться электрон F-центра, рядом с которым помещен трехвалентный редкоземельный ион. В выбранном кластере один из ионов лантана заменен на редкоземельный ион. Поскольку полный спин кластера необходимо задавать при расчете, расчет проводился с двумя возможными значениями спина, и выбиралась модель с наименьшей полной энергией кластера. Интерес представляет сравнение результатов расчетов для ионов с малыми и большими вторыми потенциалами иони-

Рис. 3. Спектры поглощения двухвалентного самария в LaF₃ с указанной примесью SmF₃. Двухвалентный самарий получен при выращивании кристалла (верхняя кривая) и при рентгеновском облучении кристалла, содержащего только трехвалентный самарий (нижняя кривая).

зации. К первым относится ион церия. В ионе Ce^{3+} валентный неспаренный электрон находится на атомной 4*f*-орбитали, с учетом электрона от F-центра получаем два внешних электрона. Полный спин может быть либо 1 (триплетное состояние), либо 0 (синглетное состояние). Полная энергия кластера с триплетным состоянием ниже по энергии на 1.1 эВ. В этом случае занятая одним электроном расчетная орбиталь с наибольшей энергией похожа на орбиталь F-центра с небольшим вкладом от атомной 4*f*-орбитали иона церия (рис. 4). Подобные результаты с локализацией внешнего электрона преимущественно на вакансии получены для кластеров с ионами Y, Lu, Pr.

Ион самария характеризуется относительно большим вторым ионизационным потенциалом. В основном состоянии иона Sm^{3+} пять электронов располагаются на атомных 4*f*-орбиталях с параллельными спинами. Наивысшая по энергии занятая одним электроном орбиталь в кластере $SmLa_3F_7$ является атомной 4*f*-орбиталью самария (рис. 4). Похожие результаты с локализацией внешнего электрона на 4*f*-уровне лантаноида получены также для ионов Eu, Tm, Yb. Для тяжелых лантаноидов Tm, Yb меньшую полную энергию имеет кластер с меньшей мультиплетностью, при этом дополнительный электрон размещается на примесном ионе, уменьшая его полный спин.

ОБСУЖДЕНИЕ

В результате рентгеновского облучения кристаллов фторида лантана с редкоземельными

Рис. 4. Наивысшие занятые одноэлектронные орбитали для кластера La_4F_8 , содержащего F-центр (а) и центры $Ce^{3+}-F$ (б), Sm^{2+} -вакансия (в). Кружками малого размера обозначены ионы фтора, большого размера – ионы лантана.

трехвалентными ионами при комнатной температуре образуются электронные центры с полосами 350—800 нм и дырочные центры с полосами около 200 нм (F_3) и около 330 нм (V_k -типа).

Выше редкоземельные примеси были разделены на две группы по форме наведенных полос поглощения. В первой группе полосы поглощения, находящиеся в области F-полос беспримесного фторида лантана, можно приписать поглощению F-центров, возмущенных редкоземельными ионами. По соотношению интенсивностей полос дырочных и электронных центров сила осциллятора переходов в области 550 нм оценена в 0.3–0.5, что близко к силе осциллятора F-центров в щелочных галоидах [13].

В другой группе примесей электронными центрами являются двухвалентные редкоземельные ионы. В спектрах поглощения кристаллов LaF₃-Sm (рис. 2) отчетливо видна идентичность спектров ионов двухвалентного самария, образованных как при выращивании LaF₃-SmF₃ в восстановительной атмосфере, так и в процессе рентгеновского облучения кристаллов. солержащих трехвалентный самарий. В работе [3] из сопоставления результатов измерений проводимости, оптических спектров и неэмпирических квантово-химических расчетов был сделан вывод об образовании центров Sm²⁺-анионная вакансия. При радиационном облучении LaF₃-Sm³⁺ наводится спектр поглощения, идентичный спектру центров Sm^{2+} -анионная вакансия (рис. 3). Этот важный результат указывает на то, что F-центры, образующиеся при облучении фторида лантана, захватываются трехвалентным самарием с образованием центров Sm²⁺-вакансия. Уже при концентрации самария 0.1 мол. % SmF3 все образующиеся F-центры расходуются на образование двухвалентных самариевых центров.

Образование центров Eu^{2+} —вакансия в LaF_3 показано в недавней работе [12]. Нам не удалось вырастить кристаллы LaF_3 -EuF₃ с измеримым содержанием трехвалентного европия, наблюдались лишь спектры ионов Eu^{2+} [12]. На трудности выращивания кристаллов LaF_3 с трехвалентным европием указано и в обзорной работе [1].

Основываясь на подобии наведенных рентгеновским излучением спектров поглощения с примесями Yb, Tm, Nd и хорошо идентифицированным спектром Sm^{2+} —вакансия (рис. 2, 3), можно полагать, что в кристаллах LaF₃ с этими примесями при рентгеновском облучении также образуются центры "двухвалентный лантаноид вакансия фтора".

Обобщая вышеизложенное, можно сделать вывод, что в кристаллах фторида лантана с редкоземельными ионами под действием ионизирующего излучения при комнатной температуре образуются центры, состоящие из одинаковых начальных частей: иона Ln³⁺, анионной вакансии и электрона. В случае редкоземельных ионов, отнесенных к первой группе, электрон располагается большей частью на анионной вакансии, что приводит к спектрам поглощения F-подобных центров. В случае других редкоземельных ионов

Энергия переноса электрона с уровня RE²⁺ в зону проводимости LaF₃ [14]. В третьей строке показан тип электронных центров, образующихся при рентгеновском облучении при комнатной температуре: F-(RE³⁺-F) или V-(RE²⁺-вакансия)

RE ²⁺	Y	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
<i>I</i> , эВ		-0.36	0.89	1.33	2.49	3.74	-0.77	0.58	1.51	1.35	1.15	2.05	3.33	
Тип центра	F	F	F	V?	V	V	F	F	F	F	F	V	V	F

электрон локализуется в основном на редкоземельном ионе (рис. 2, 3).

Можно полагать, что причиной образования двух типов центров RE²⁺-вакансия или RE³⁺-F является различие положений уровней энергии ионов RE²⁺ и F-центра в зонной схеме. В зависимости от того, у какого дефекта основной уровень ниже по энергии, происходит преимущественная локализация электрона либо на редкоземельном ионе, либо на анионной вакансии. Энергетические зазоры между уровнем иона RE²⁺ и зоной проводимости в LaF₃ были оценены по эмпирической модели в работе [14] (таблица). В третьей строке таблицы указан тип электронного центра, образующегося при рентгеновском облучении. Тулий и диспрозий являются лантаноидами с самыми близкими энергиями основных уровней, образующих разные электронные центры. Лантаноиды с положением основного состояния выше, чем у тулия (>2.05 эВ), образуют центры RE²⁺-вакансия, а лантаноиды с основным уровнем выше, чем у диспрозия (<1.51 эВ), образуют центры RE³⁺-F (таблица). Следовательно, уровень F-центра в LaF₃ лежит на 1.51-2.05 эВ ниже дна зоны проводимости. Единственное исключение – это ион Nd²⁺ (таблица).

Потенциал ионизации F-центра в LaF₃ можно оценить следующим образом. Экспериментальные энергии F-полос, расщепленных кристаллическим полем решетки LaF₃, равны 1.9, 2.2, 2.7 эВ [4]. Полагая, что первый возбужденный уровень F-центра близок к дну зоны, получим величину зазора около 1.9 эВ, что попадает в экспериментальный диапазон величин (1.51–2.05 эВ) (таблица).

Проведенные предварительные квантово-химические расчеты находятся в хорошем качественном согласии с экспериментальными результатами и результатами оценок, приведенных в таблице.

ЗАКЛЮЧЕНИЕ

В процессе радиолиза кристаллов фторида лантана при комнатной температуре происходит образование дырочных центров (V_{kA} и/или F_3^-) и электронных F-центров, которые захватываются примесными ионами RE³⁺. Тип электронных

ОПТИКА И СПЕКТРОСКОПИЯ том 121 № 4 2016

центров окраски, созданных рентгеновским облучением легированного кристалла LaF_3 , зависит от соотношения потенциалов ионизации RE^{2+} и F-центра. Редкие земли RE^{2+} (Sm, Eu, Tm, Yb) с потенциалом ионизации большим, чем у F-центра (глубокие ловушки), образуют центры RE^{2+} —анионная вакансия. Другие редкоземельные ионы с меньшим потенциалом ионизации (Y, Pr, Gd, Tb, Dy, Ho, Er, Lu) образуют центры RE^{3+} —F, которые по оптическим спектрам можно рассматривать как F-центры, возмущенные соседними ионами RE^{3+} .

СПИСОК ЛИТЕРАТУРЫ

- Carnall W.T., Goodman G.L., Rajnak K., Rana R.S. // J. Chem. Phys. 1989. V. 90. P. 3443–3457.
- 2. *Dieke G.H.* Spectra and Energy Levels of Rare Earth Ions in Crystals. Intersc. Publ., 1968. 401 p.
- 3. *Раджабов Е.А., Козловский В.А.* // Известия РАН. Сер. физ. 2015. Т. 79. № 2. С. 314–318.
- Radzhabov E.A., Nepomnyashikh A.I. // SCINT 95: Proc. Intern. Conf. on Inorganic Scintillators and Their Applications. Delft, The Netherlands, August 28–September 1. 1995. P. 189–192. http://arxiv.org/abs/1510.07781
- 5. *Thoma E.D., Shields H., Zhang Y., McCollum B.C., Williams R.T.* // J. Luminesc. 1997. V. 71. № 2. P. 93.
- 6. *Раджабов Е.А.* // Опт. и спектр. 2016. Т. 120. № 1. С. 123–128.
- Vasil'chenko V.G., Krechko Yu.A., Motin Yu.D., Sobolev B.P. // Nuclear Instruments and Methods in Physics Research. B. 1997. V. 122. P. 63–72.
- Elias L.R., Heaps W.S., Yen W.M. // Phys. Rev. B. 1973.
 V. 8. № 11. P. 4989.
- 9. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 03 (Revision E.1). Gaussian Inc., Pittsburgh PA, 2007.
- 10. *Schlyter K.* // ARKIV FOR KEMI. 1953. T. 5. № 1. C. 73–82.
- 11. Figura P.V., Nepomnyashikh A.I., Radzhabov E.A. // Opt. and Spectrosc. 1989. V. 67. P. 1304.
- 12. Radzhabov E.A., Shendrik R. // Radiation Measurements. 2016. doi 10.1016/j.radmeas.2016.02.012
- 13. Physics of Color Centers / Ed. by Fowler W.B. New York: Academic Press, 1968.
- 14. Dorenbos P. // J. Luminesc. 2013. V. 135. P. 93-104.