ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ

ФИЗИКА

УДК 574.6

М.А. СЕМЁНОВА, А.В. ЕГРАНОВ, В.Ф. ИВАШЕЧКИН

ИССЛЕДОВАНИЕ СИММЕТРИИ В КРИСТАЛЛАХ SrF₂, BaF₂, АКТИВИРОВАННЫХ Zn И Cd, МЕТОДОМ ЭПР

Кристаллы фтористого бария и стронция с кадмием и цинком исследовались методом ЭПР на радиоспектрометре РЭ-1306 при комнатной температуре. В монокристаллах SrF_2 , BaF_2 , легированных ионами Zn^{2+} и Cd^{2+} , после облучения рентгеновскими лучами наблюдается спектр ЭПР ионов Zn^+ , Cd^+ , находящихся в состоянии ${}^2S_{1/2}$. Определены константы сверхтонкой структуры.

Введение

Работа мотивируется потребностью в высокоэффективных, быстрых, плотных сцинтилляторах. Требуемые характеристики: быстродействие, эффективность, высокая плотность, размеры, высокая радиационная стойкость и прозрачность. Кристаллы фтористого бария являются перспективными сцинтилляторами электромагнитных калориметров в физике высоких энергий благодаря быстрым остовно-валентным переходам.

Исследованию примесных центров Cd⁺ в состоянии ${}^{2}S_{1/2}$ в кристаллических матрицах методом ЭПР посвящено сравнительно небольшое число публикаций [1]. А публикаций об исследованиях примесных центров Zn⁺ в состоянии ${}^{2}S_{1/2}$ методом ЭПР нет. В данной работе излагаются результаты исследования сверхтонких взаимодействий иона Zn⁺ в кристалле флюорита SrF₂.

1. Методика эксперимента

Объектом исследования служили кристаллы фторидов стронция и бария, активированные цинком и кадмием. Концентрация цинка и кадмия в кристаллах составляла 1 мол. %.

Кристаллы выращены в вакууме в графитовом тигле методом Бриджмэна – Стокбаргера. Так как примесь кадмия обычно используется при выращивании фторидных кристаллов как добавка в шихту для предотвращения образования кислородных примесей, то выращивание приходилось производить под затвором из собственного расплава для предотвращения улетучивания примеси кадмия или цинка из расплава. Концентрация примеси определялась атомно-эмиссионным методом [2].

Выколотые образцы размером примерно 5×3×3 мм облучались рентгеновской трубкой БХВ-12 с палладиевым анодом в режиме 35 кВ, 20 мА, при комнатной температуре, в течение 15 мин с каждой стороны.

ЭПР-исследования были сделаны на радиоспектрометре РЭ-1306 при комнатной температуре.

2. Экспериментальные результаты

Исследование кристаллов проводилось при трёх направлениях магнитного поля: $B \| < 100 >$, $B \| < 110 >$, $B \| < 111 >$. До облучения спектр ЭПР ионов Zn^{\dagger} , Cd^{\dagger} отсутствовал. После облучения при комнатной температуре спектр ЭПР появлялся и оставался стабильным при нагревании образцов до 200 °C.

Из восьми изотопов природного кадмия два ¹¹¹Cd и ¹¹³Cd имеют отрицательные ядерные магнитные моменты. Отношения магнитных моментов $\mu(^{113}Cd)/\mu(^{111}Cd) = 1,0461$. Ядерные спины обоих изотопов I = 1/2. Естественная распространённость ¹¹¹Cd – 12,8 % и ¹¹³Cd – 12,2 %. Электронная конфигурация $4d^{10} 5s^2$. Основное состояние $^2S_{1/2}$.

Из пяти изотопов природного цинка один ⁶⁷Zn имеет ненулевой ядерный магнитный момент μ (⁶⁷Zn) = 0,876. Ядерный спин изотопа I = -5/2. Естественная распространённость ⁶⁷Zn - 4,1 %. Электронная конфигурация $3d^{10} 4s^2$. Основное состояние ${}^{2}S_{1/2}$.

На спектрах можно наблюдать лишь четные изотопы, так как они имеют нулевой спин [3].

На рис. 1, *а* показан спектр ЭПР для кристалла $SrF_2 - 1\%$ ZnF₂, при направлении поля *B* <a>||<100>. Спектр состоит из девяти равно расположенных линий, с распределением интенсивностей 1:8:28:56:70:56:28:8:1. Это соответствует сверхтонкой структуре из восьми эквивалентных ядер фтора, с ядерным спином 1/2 [4], и говорит о том, что Zn⁺ ион занимает позицию в центре куба и окружен восьмью эквивалентными ядрами фтора, т.е. имеет кубическую симметрию O_b. Энергетические уровни СТВ с одной группой эквивалентных ядер фтора получаются путём последовательного одинакового расщепления сверхтонких уровней. Спектр соответствует четным изотопам цинка. Расстояние между уровнями $A_0 = 95,6122$ Гс.

Рис. 1. Спектры ЭПР, облучение при комнатной температуре $B \| < 100 >: a - SrF_2 - 1 \% ZnF_2; \delta - BaF_2 - 1 \% CdF_2, A_0 - расстояние между уровнями$

На рис. 1, б показан спектр ЭПР для кристалла $BaF_2 - 1$ % CdF₂, при направлении поля $B \| < 100 >$. Спектр имеет кубическую симметрию. Для данного направления магнитного поля имеем одну группу эквивалентных протонов. Это говорит о том, что энергетический уровень расщепляется на девять подуровней. В связи с этим мы должны видеть девять равнорасположенных линий, но из-за того, что интенсивность крайних линий слишком мала, они не наблюдаются. Расстояние между уровнями $A_0 = 79 \Gamma c$.

На рис. 2, а показан спектр ЭПР для кристалла $SrF_2 - 1\%$ ZnF_2 , при направлении поля $B \parallel < 110 >$. Так как имеется кубическая симметрия центра, то для этого направления поля существует две группы эквивалентных ядер, в каждой группе по четыре ядра. Исходя из этого, известно, что энергетический уровень расщепляется сначала на пять подуровней, а затем, при взаимодействии со второй эквивалентной группой атомов, каждый из подуровней расщепляется ещё на пять. В конечном итоге получаем двадцать пять переходов, а следовательно, должны получить и двадцать пять линий, но вследствие перекрывания уровней невозможно увидеть все ожидаемые линии, а лишь двадцать три. Расстояние между уровнями при СТВ первой группы эквивалентных ядер $A_1 = 108,94$ Гс и расстояние между уровнями при СТВ второй группы эквивалентных ядер $A_2 = 78,2$ Гс.

Рис. 2. Спектры ЭПР, облучение при комнатной температуре $B \| < 110 >: a - \text{SrF}_2 - 1 \% \text{ZnF}_2$; $\delta - \text{BaF}_2 - 1 \% \text{CdF}_2$, A_1 – расстояние между уровнями при сверхтонком взаимодействии первой группы эквивалентных ядер, A_2 – расстояние между уровнями при сверхтонком взаимодействии второй группы эквивалентных ядер

На рис. 2, б показан спектр ЭПР для кристалла $BaF_2 - 1$ % CdF₂, при направлении поля $B \| < 110 >$. Имеем кубическую симметрию центра, следовательно, все выводы, которые сделаны для спектра на рис. 2, *a*, подходят и для данного спектра. Вследствие перекрывания уровней и небольшой интенсивности крайних линий нельзя видеть все ожидаемые линии. Видны лишь восемнадцать линий. Расстояние между уровнями $A_1 = 92,817$ Гс и $A_2 = 66,8$ Гс.

На рис. 3, а показан спектр ЭПР для кристалла $SrF_2 - 1$ % ZnF₂, при направлении поля $B \| < 111 >$. Центр имеет кубическую симметрию. Для данного направления поля имеем две группы эквивалентных ядер фтора. В первой группе два ядра, а во второй — шесть. Из этого следует, что энергетический уровень расщепляется сначала на три подуровня (с расстоянием между уровнями $A_1 = 119,8$ Гс) и далее каждый из этих подуровней расщепляется ещё на семь (расстояние между уровнями $A_2 = 84,12$ Гс). В конечном итоге получаем двадцать один переход, а следовательно, двадцать одну линию.

Рис. 3. Спектры ЭПР, облучение при комнатной температуре $B \| < 111 >: a - SrF_2 - 1 \% ZnF_2; \delta - BaF_2 - 1 \% CdF_2, A_1 - расстояние между уровнями при СТВ первой группы эквивалентных ядер и <math>A_2$ - расстояние между уровнями при СТВ второй группы эквивалентных ядер

А на рис. 3, б показан спектр ЭПР для кристалла $BaF_2 - 1$ % CdF_2 , при направлении поля $B \| < 111 >$. Центр имеет кубическую симметрию, следовательно, все выводы, которые сделаны для спектра на рис. 3, *a*, подходят и для данного спектра. Вследствие перекрывания уровней и небольшой интенсивности крайних линий невозможно видеть все ожидаемые линии. Спектр состоит из четырнадцати линий. Расстояние между уровнями $A_1 = 103$, 4 Гс и $A_2 = 79$ Гс.

Были произведены расчёты констант сверхтонкого взаимодействия: для кристалла BaF_2 , активированного CdF_2 , константа изотропного CTB равна 78,2 Гс, а анизотропная – 11,4 Гс, что соответствует литературным данным; для кристалла $SrF_2 - 1$ % ZnF_2 константа CTB равна 92,3 Гс, анизотропная константа CTB равна 14,1 Гс. Расчет производился для спектров при направлении поля <100>, <110>, но при направлении поля <111> эти константы также верны.

Заключение

В кристаллах фтористого стронция, бария активированных двухвалентными ионами цинка и кадмия, соответственно, ионизирующее излучение восстанавливает примесные ионы до одновалентного состояния. При этом одновалентный ион окружен восьмью эквивалентными ионами фтора и имеет кубическую симметрию O_h . При такой симметрии *p*-состояние Zn⁺ и Cd⁺ иона не расщепляется [5].

Известно, что при комнатной температуре происходит последовательное понижение симметрии центра сначала до $C_{3\nu}$ и далее до $C_{2\nu}$, за счет присоединения к ближайшему окружению примесного одновалентного иона одной или двух анионных вакансий соответственно, т.е. собственных дефектов, которые в неактивированных кристаллах фтористого стронция не образуются. Исследования для симметрий $C_{3\nu}$ и $C_{2\nu}$, а также исследования этих кристаллов при температуре жидкого азота будут проводиться в дальнейшем.

СПИСОК ЛИТЕРАТУРЫ

- Крутиков В.Ф., Силкин Н.И., Степанов В.Г. // ФТТ. 1976. Т. 18. № 10. С. 2958–2963.
 Egranov A.V., Radzhabov E.A., Nepomnyashikh A.I., and Ivashechkin V.F. // Изв.
- 2. Egranov A.V., Radzhabov E.A., Nepomnyashikh A.I., and Ivashechkin V.F. //Иза. вузов. Физика. – 2006. – № 4. Приложение. – С. 30.
- 3. Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов: справочник. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1986. 344 с.
- 4. Вертц Дж., Болтон Дж. Теория и практические приложения метода ЭПР. М.: Мир, 1975.
- 5. Radzhabov E., Mysovsky A., Egranov A., et al. // Phys. Status Solidi (c). 2005. V. 2. -P. 388.

Институт геохимии им. А.П. Виноградова СО РАН, г. Иркутск, Россия E-mail: boza.84@mail.ru

Поступила в редакцию 02.11.09.