том 66, вып. 6 🛛 . Онтика и спектроскопия 🔹 1989 год

3.444 AM 2944

УДК 535.34 : 548.0

ОБРАЗОВАНИЕ НаНа-ЦЕНТРОВ В КРИСТАЛЛАХ ФТОРИСТОГО ЛИТИЯ, АКТИВИРОВАННЫХ ВОДОРОДОМ

Егранов А. В., Непомнящих А. И., Отрошок В. В., Черняго Б. П.

В кристаллах фтористого лития, активированных водородом, исследованы парные $H_{\tilde{a}}^{-}H_{\tilde{a}}^{-}$ -центры. Показано, что рентгеновское облучение при компатной температуре приводит к увеличению концентрации нарных $H_{\tilde{a}}^{-}H_{\tilde{a}}^{-}$ -центров, по-видимому, за счет последовательного захвата междоузельных атомов водорода $H_{\tilde{a}}^{0}$ *М*-центрами и образовавшимися $F_{H}(H_{\tilde{a}}^{-})$ -центрами: $M + H_{\tilde{i}}^{0} + H_{\tilde{i}}^{0} \rightarrow F_{H}(H_{\tilde{a}}^{-}) + H_{\tilde{i}}^{0} \rightarrow \Pi_{\tilde{a}}^{-}H_{\tilde{a}}^{-}$.

В щелочно-галоидных красталиах с большим содержанием водорода появляются полосы поглощения, обусловленные локальными колебаниями парных $H_a^-H_a^-$ -центров (парный центр представляет собой два иона водорода в соседних узлах анионной подрешетки) [^{1, 2}]. Центры имеют точечную группу симметрии C_{2e} . Три из шести невырожденных локальных мод — продольная L и поперечные T_1, T_2 — наблюдаются в спектрах поглощения в инфракрасном диапазоне. В KCl, KBr, KJ, RbCl парные $H_a^-H_a^-$ -центры можно получить при относи-

В КСІ, КВг, КЈ, RbCl парные $H_a^-H_a^-$ -центры можно получить при относительно пебольшой концентрации водорода в кристаллах. После преобразования U- в F-центры и последующего фотопревращения последних в M-цептры при комнатной температуре наблюдаются разрушение M-полосы и рост полос иоглощения парных $H_a^-H_a^-$ -центров. Предполагается, что разрушение M-центров связано с захватом ими междоузельных молекул водорода H_{2i} , которые, однако, не взаимодействуют с F-центрами

$$M + \mathrm{H}^{\mathrm{o}}_{2i} \longrightarrow \mathrm{H}^{-}_{a}\mathrm{H}^{-}_{a}. \tag{1}$$

Подобным образом получить $H_a^-H_a^-$ -центры в кристаллах NaCl не удалось [²]. Нагрев кристалла вплоть до температуры разрушения *М*-центров не сопровождался увеличением концентрации парных водородных центров. Возможно, что при этих температурах молекулы H_{2i}^0 еще недостаточно подвижны.

В данной работе сообщаются результаты исследования парных водородных Н_a-H_a-центров в кристаллах фтористого лития. Обсуждается причина низкой эффективности их образования при термическом разрушении *М*-центров.

Экспериментальная техника

Выращивание монокристаллов фтористого лития, активированных водородом, производилось методом Стокбаргера в атмосфере водорода по описанной ранее методике [³]. В работе использовались кристаллы с содержанием водорода от 1·10¹⁶ до 5·10²⁰ см⁻³. Измерение спектров поглощения в видимой и ИК областях спектра производилось соответственно на спектрофотометрах Specord UV-VIS и Specord 75 IR. Спектры ЭПР регистрировались на спектрометре РЭ 1306 при 80 и 295 К в условиях отсутствия насыщения. Окрашивание кристаллов производилось рентгеновским излучением трубки БХВ-12 (50 мА, 40 кВ). Концентрация водорода в кристаллах LiF определялась оптическими методами с исиользованием спектров поглощения в ВУФ- и ИК областях спектра или волюмометрическим методом путем растворения образцов в растворе серной кислоты с последующим определением выделившегося водорода.

Результаты и обсуждение

В спектрах поглощения кристаллов LiF с достаточно большой концентрацией водорода ($\geq 0.1 \text{ мол }\%$) кроме основной U-полосы (1015 см⁻¹), наблюдаются боковая 1320 см⁻¹, а также полоса поглощения с максимумом 940 см⁻¹ при комнатной температуре. С увеличением концентрации водорода в кристаллах фтористого лития происходит рост полосы 940 см⁻¹ по квадратичному закону (рис. 1, кривая 2). Такая зависимость характерна для парных центров. Поэтому эту полосу можно приписать парным водородным центрам $H_a^- H_a^-$

Охлаждение кристаллов LiF-H⁻ до температуры жидкого азота приводит к сдвигу полосы 940 до 948 см⁻¹ и разрешению другой полосы поглощения пар-

Рис. 4. Спектр поглощения кристалла LiF-II⁻ ($C_{\rm H}^{--4} \cdot 10^{19}$ см⁻³; d=0.25 мм) при 80 К (1); зависимость козффициента поглощения полосы 940 см⁻¹ от концептрации водорода в LiF в логарифмических координатах (2).

ных $\Pi_a^-\Pi_a^-$ -центров при 1044 см⁻¹ (рис. 1, кривая 1). *L*-полоса парных $\Pi_a^-\Pi_a^-$ центров обычно наблюдается с низкоэнергетической стороны *U*-полосы поглощения, а две поперечные T_1 и T_2 — с высокоэнергетической, при этом T_1 -полоса поглощения имеет значительно большую ширину, чем остальные, и, следовательно, меньшее оптическое поглощение [1, 2]. На основании этого полосу поглощения 948 см⁻¹ разумно связать с продольной *L*-модой, а полосу 1044 см⁻¹ с понеречной T_2 -модой. Поглощение, связанное с локальной модой T_1 , не обиаружено при 80 К.

При рентгеновском облучении (доза (~ $0.3 \div 3.0$)· 10^5 Гр) при 295 К полосы поглощения парных $II_a^-II_a^-$ -центров значительно увеличиваются или возникают в тех кристаллах, в которых до облучения не наблюдались. Радиационнонаведениые парные $H_a^-H_a^-$ -центры устойчивы при компатной температуре, а термическое разрушение их происходит при 520—540 К. На рис. 2 представлены зависимости коэффициентов поглощения M- и $H_a^-II_a^-$ -центров от температуры отжига кристалла (кривые 4 и 5 соответственно). При температуре около 390 К разрушение M-центров сопровождается пебольшим увеличением концентрации парных $H_a^-II_a^-$ -центров, однако не столь значительным, как в случае кристаллов KCl, KBr, KJ, RbCl[^{1, 2}]. Для выяснения причины этого проведен ряд экспериментов при температуре жидкого азота.

В спектре поглощения кристаллов LiF-H⁻, облученных рентгеновским излучением при 80 К (рис. 3, кривая 1), кроме *F*-полосы наводятся две дополнитель-

1320

ные полосы поглощения при 3.5 и 2.4 эВ. Полоса поглощения 3.5 эВ расположена в области поглощения V_k -центров, однако сигнала ЭПР от V_k -центров в кристаллах LiF-H⁻ в отличие от «чистых» кристаллов не обнаружено. Полосы поглощения 3.5 и 2.4 эВ принадлежат одному центру, так как при отжиге кристалла имеет место пропорциональное изменение этих полос.

В спектре ЭПР (рис. 4) кристаллов LiF-H⁻, облученных рентгеновским излучением при 80 К, наблюдается изотропный дублетный спектр с константой сверхтонкого расщепления 518 ± 2 Гс и полушириной 45 ± 3 Гс, что указывает на присутствие атомарного водорода. Наиболее вероятно, что этот спектр принадлежит атомарному водороду, находящемуся в междоузлии H⁰. Атомарный водород в анионном узле H⁰₀ имсет спектр со значительно меньшей полушириной каждой компоненты [⁴], а в катионном узле H⁰₀-центры образуются только в кристаллах, содержащих двухвалентные катионы с компенсирующими катионными вакансиями [^{5, 6}].

Рис. 2. Температурные зависимости изменения сигнала ЭПР H_i^0 -атомов водорода (1), полос ноглощения 3.5 и 2.4 эВ (2), полосы 5.05 эВ (3, 6), разрушения *М*-центров (4) и изменения концентрации парных $H_a^-H_a^-$ -центров (5) в кристаллах LiF, активированных водородом.

На рис. 2 видно, что отжиг сигпала ЭПР (кривая 1) хорошо коррелирует с разрушением полос поглощения 3.5 и 2.4 эВ (кривая 2). Кроме того, обесцвечивание кристаллов светом 3.68 зВ (азотный лазер) при 80 К приводит к разрушению этих полос поглощения, одновременно исчезает сигнал ЭПР от Н⁰центров. Следовательно, полосы поглощения 3.5 и 2.4 зВ можно связать с длинноволновым поглощением Н⁰-центров. Разрушение сигнала ЭПР и полос поглощения H⁰-центров при нагреве кристалла происходит в несколько этапов, что, по-видимому, связано с тем, что подвижные при температуре выше 110 К H⁰центры [⁷] закрепляются у некоторых дефектов. Это повышает их термическую стабильность. Так, например, в кристаллах КСІ междоузельные атомы водорода стабилизируются ОН⁻-центрами [⁸].

Термическое разрушение полос поглощения H_i^{0} -центров сопровождается ростом полосы с максимумом 5.05 эВ (рис. 2, кривая 3 и рис. 3, кривая 2), расположенной в районе *F*-полосы. Можно полагать, что центры 5.05 эВ образуются вследствие захвата междоузельного атома водорода H_i^{0} ионом водорода в анионном узле — *U*-центром: $H_i^{0} + \Pi_a^{-} \rightarrow (H_2^{-})_a$. От $(H_2^{-})_a$ -центров наблюдается триплетный сигнал ЭПР с соотношением илтенсивностей 1 : 2 : 1 (на рис. 4 не показан). Реакция взаимодействия подвижных атомов водорода H_i° с *U*-центрами с образованием $(H_2^{-})_a$ -центров предложена в [⁹]. Более дстальное описание этих результатов будет сделано в следующей статье. В данной работе нас интересует только тот факт, что центры 5.05 эВ образуются при захвате некоторым дефектом междоузельного атома водорода. В щелочно-галондных кристаллах исследовано образование различных центров, связанных с процессом зах-

1321

вата подвижных атомов водорода H⁰_i. В кристаллах KCl, KBr образуются H₂O⁻центры путем захвата ОН⁻-центрами междоузельных атомов водорода H⁰_i [^{10, 11}]. Эти центры имеют сложные полосы поглощения в районе F-полосы. Вкристаллах с примесью SH⁻ образуются H₂S⁻-центры [¹²].

Центры, ответственные за полосы 5.05 эВ, можно получить после длительного облучения кристалла LiF-H⁻ нефильтрованным ВУФ светом лампы ВМФ-25. На первом этапе в результате диссоциации *U*-центров образуются обычные *F*-центры [³]; длительное освещение приводит к смещению *F*-полосы поглоще-

ния в коротковолновую сторону, которое связано с образованием центров 5.05 эВ.

Изменение температуры от 80 К до комнатной практически не меняет положения полосы поглощения 5.05 эВ, в то время как *F*-полоса сдвигается в длинноволновую сторону до 4.95 эВ.

Рис. 3. Спектры поглощения кристаллов LiF-H⁻ при 80 K, облученных рентгеновским излучением при 80 K (1), с последующим нагревом до 170 K (2).

Термическое разрушение центров 5.05 эВ происходит при температурах около 390 К и совпадает с разрушением *М*-центров и небольшим увеличением концентрации $H_a^-H_a^-$ -центров (рис. 2, кривая 6). Так как процесс образования центров 5.05 эВ связан с захватом междоузельного атома водорода H_i^0 , то можно полагать, что разрушение этих центров приводит к освобождению H_i^0 , которые захватываются *М*-центрами с образованием *F*-центров, расположенных рядом

с U-центрами. Последующий захват этими $F_{\rm H}$ (${\rm H}_a^-$)-центрами другого междоузельного атома водорода приводит к образованию парпых ${\rm H}_a^-{\rm H}_a^-$ -центров

Рис. 4. Производная ЭПР поглощения кристаллов LiF-H⁻ при 80 K, облученных релтгеновским излучением при 80 K (у=9170 MI'ц).

Ŋ

 $\overset{M}{\to} H^{0}_{i} \longrightarrow F_{H}(H^{-}_{a}),$ (2)

$$F_{\rm H}\left({\rm H}_a^{-}\right) + {\rm H}_i^0 \longrightarrow {\rm H}_a^{-} {\rm H}_a^{-}. \tag{3}$$

Полоса поглощения $F_{\rm H}$ (H_a)-центров незначительно отличается от F-полосы поглощения [¹³], поэтому по спектрам поглощения трудно различить эти полосы.

Значительное число каналов для захвата междоузельных атомов водорода H_{0}^{0} и двухступенчатость процесса, по-видимому, объясняют низкую эффективность образования $H_{a}^{-}H_{a}^{-}$ -центров при термическом разрушении *M*-центров. Увеличение поглощения парных $H_{a}^{-}H_{a}^{-}$ -центров ири воздействии ионизирующего облучения при комнатной температуре также, по-видимому, происходит за счет двухступенчатого процесса по реакциям (2) и (3). Следовательно, процесс образования радиационно-наведенных $H_{a}^{-}H_{a}^{-}$ -центров должен иметь температурную зависимость, похожую на зависимость образования *M*-центров. Рентгеновское облучение при температуре 80 К не приводит к увеличению полос поглощения парных $H_{a}^{-}H_{a}^{-}$ -центров в отличие от облучения при комнатной температуре.

1322

Литература

- (1) De Souza M., Lüty F. // Phys. Rev. 1973. V. B 8. N 12. P. 5866-5874.
 (2) Robert R., de Souza M. // Phys. Rev. 1974. V. B 9. N 12. P. 5257-5263.
 (3) Erpanob A. B., Henomhamux A. M., Orpomok B. B., Pagmar6ob E. A., Yepharo B. Π. // Опт. и спектр. 1988. Т. 65. В. 2. С. 335.
 (4) Hoetzch Chz., Spaeth I. M. // Sol. St. Commun. 1979. V. 29. N 8. P. 577-581.
 (5) Spaeth I. M. // Defects in Insulating Crystals. Riga, 1981. P. 232-254.
 (6) Henomhamux A. M., Mucobckuй C. H., Иванов B. Э., Татаринов А. Г., Шлюгер А. Л. // Теянси докл. VI Всесков. конф. по радиационной физике и химии вонных кристаллов. Рига, 1986. С. 325-326.
 (7) Науеs W., Hodby I. W. // Proc. Roy. Soc. 1966. V. A 294. N 1438. P. 359-375.
 (8) Gomes L., Morato S. P. // Sol. St. Commun. 1982. V. 41. N 9. P. 653-655.
 (9) Бикбаева З. Г., Григорук Л. В. // ФТТ. 1984. Т. 26. В. 9. С. 2767-2771.
 (10) Rusch W., Seidel H. // Sol. St. Commun. 1971. V. 9. N 3. P. 231-234.
 (11) Rusch W., Seidel H. // Phys. St. Sol. 1974. V. B 63. N 1. P. 183-195.
 (12) Hausmann A. // Z. Physik. 1966. В. 192. N 3. S. 313-328.
 (13) Kondo Y., Lüty F. // Sol. St. Commun. 1981. V. 40. N 4. P. 325-329.

Поступило в Редакцию 18 апреля 1988 г. В окончательной редакции 19 января 1989 г.