Study of Nd2+ absorption in x-irradiated CaF\textsubscript{2}, SrF\textsubscript{2}, BaF\textsubscript{2} crystals

T. Sizovaa,*, E. Radzhabova,b, R. Shendrika,b, A. Egranova,b, A. Shalaevaa,b

a Vinogradov Institute of Geochemistry SB RAS (IGC SB RAS), 1A Favorskii Str., Irkutsk 664033, Russia
b Physics Department of Irkutsk State University, 20 Gagarin blvd., Irkutsk 664003, Russia

HIGHLIGHTS

- We found absorption attributed to Nd2+ in CaF\textsubscript{2}, SrF\textsubscript{2}, BaF\textsubscript{2}.
- The charge reduction of the neodymium by irradiation is not temperature-stable.
- The band at 6 eV CaF\textsubscript{2}, SrF\textsubscript{2} and BaF\textsubscript{2} doped with Nd could be attributed to F\textsubscript{3} centers.

ARTICLE INFO

Article history:
Received 25 October 2015
Received in revised form 4 February 2016
Accepted 5 February 2016
Available online 10 February 2016

Keywords:
Fluorides
Spectroscopy
X-irradiation
Rare-earths
Neodymium

ABSTRACT

The absorption spectra of x-irradiated alkaline-earth fluoride (CaF\textsubscript{2}, SrF\textsubscript{2}, BaF\textsubscript{2}) crystals doped with Nd3+ ions have been investigated. X-irradiation results in creating the absorption bands of inter-configuration \(4\text{f}^6-4\text{f}^5\text{d}^1\) transitions of Nd2+. The charge reduction of the neodymium by irradiation is not temperature-stable and the ions reoxidation (Nd2+ → Nd3+) occurs under heating to 570 K in CaF\textsubscript{2}, 520 K in SrF\textsubscript{2} and 470 K in BaF\textsubscript{2}.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the rare earths in the solid state are trivalent, except for some compounds involving Eu, Sm, Tm and Yb, which can become divalent (Meyer, 2012; Cotton, 2006; Meyer and Meyer, 1992). Crystals of alkaline earth fluorides (CaF\textsubscript{2}, SrF\textsubscript{2}) proved to be a very special host for studying rare-earth ions, as it was found that ionizing, additive or electrochemical coloration could convert those trivalent rare-earth ions located at essentially cubic sites into the divalent state (McClure and Kiss, 1963; Shendrik et al., 2016, 2014). Light lanthanides Ce3+, Pr3+, and Nd3+ ions are the impurities having potential for scintillation applications due to short luminescence decay (Shendrik and Radzhabov, 2012; Shendrik et al., 2013).

Crystals of alkaline earth fluorides doped with divalent neodymium can be used as Q-switches and passive mode-locking in lasers of the near IR wavelength range (1.3–1.6 \(\mu\)m) (Tokarev et al., 1991; Nepomnyachikh et al., 1991; Basiev et al., 1991). With this in mind, the optical study of Nd2+ ions in such crystals focuses on broad band in the near-IR range. This absorption band covers the spectral region about 5 \(\times\) 103 \(\text{cm}^{-1}\) and the band maximum shifts to the short-wave range in homological row CaF\textsubscript{2} → SrF\textsubscript{2} → BaF\textsubscript{2} (Basiev et al., 1991). More comprehensive optical investigation of Nd2+ has not been conducted so far.

This study is basically centered on the Nd2+ absorption in x-irradiated crystals of alkaline earth fluorides (CaF\textsubscript{2}, SrF\textsubscript{2}, BaF\textsubscript{2}) doped with NdF\textsubscript{3} within temperature range 80–600 K.

2. Experimental methodology

The CaF\textsubscript{2}, SrF\textsubscript{2} and BaF\textsubscript{2} crystals doped with NdF\textsubscript{3} (from 0.1 to few mol. percent) have been grown from the melt by the
Stockbarger method in graphite crucibles in vacuum. At the first stage, pure crystals were grown with addition of some amount of CdF₂ to the raw material in order to remove oxygen. Then crystals with an impurity of rare earth fluorides (MeF₃) were grown from the crystalline raw material. The absence of oxygen in the final crystals was controlled by the absence of oxygen luminescence (Radzhabov and Figura, 1994) under sample illumination by DDS-30 UV deuterium discharge lamp. The crystals CaF₂–Nd, SrF₂–Nd, BaF₂–Nd were irradiated at 80 K or 300 K by X-rays from Pd tube operating at 35 kV and 20 mA for not more than 1 h. The thermal decay of the radiation defects in temperature range 80–600 K was studied. The optical absorption spectra were measured at 80 and 300 K with a Perkin–Elmer Lambda 950 UV/VIS/NIR spectrophotometer at the Isotope-geochemical research center for Collective Use, Siberian Branch, Russian Academy of Sciences.

3. Results

The X-irradiation at 80 K of CaF₂, SrF₂ and BaF₂ doped with Nd³⁺ results in creation of strong absorption band in the ultraviolet and of bands in the visible and infrared regions (Fig. 1). The absorption bands at 3.9 eV belong to absorption of Vₖ centers (self-trapped hole) formed during irradiation process (Merz and Pershan, 1967). The absorption bands at 0.8 eV (peak 1), 2.1 eV (peak 2), 2.8 eV (peak 3) in the spectra of CaF₂ are caused by inter-configuration 4fⁿ⁻¹→5d¹ transitions of Nd²⁺ (McClure and Kiss, 1963; Arkhangel'skaya et al., 1967). The energies of the absorption bands of the x-irradiated SrF₂ and BaF₂ doped with Nd (see Table 1) are close to those of Nd²⁺ in irradiated CaF₂ doped with Nd³⁺.

The heating of the x-irradiated crystals to 120 K leads both to annealing of - Vₖ centers and the appearance of two absorption bands at 3.9 eV belong to absorption of Vk centers (see Table 1). These bands are due to absorption of Nd²⁺ and were observed first in additively colored CaF₂ crystals (Arkhangel'skaya et al., 1967).

In previous works the absorption spectra of Nd²⁺ have been observed in SrF₂ crystals in the range 340–1400 nm (Kaminskii and Li, 1968); but in ultraviolet region a wide structureless band was formed. In our study of SrF₂ crystals the absorption bands at 4 eV and 5 eV appear at the same temperatures as in CaF₂ crystals, and the band energies lie within the same spectral range of Nd²⁺ absorption. However the ratio of band intensities is different. The infrared band (peak1) has a higher optical density than the analogous band in CaF₂ spectrum. Besides, the distance between bands diminishes in the visible spectral range (peaks 2 and 3). Furthermore, an essential increase of the absorption band at 6 eV in the spectra of all three crystals is observed (curve 2).

Fig. 2 shows the thermal decay of Nd²⁺ absorption in CaF₂, SrF₂ and BaF₂ doped with Nd³⁺. Upon irradiation of the crystals at 300 K and its subsequent heating to 570 K (CaF₂), 523 K (SrF₂) and 470 K (BaF₂) the absorption of Nd²⁺ decays. There is an early investigation of photoreduction of Nd³⁺ ions to Nd²⁺ in CaF₂ crystals affected by powerful light pulses generated by an exciting lamp (Batygov and Kaminskii, 1968). It has been shown that the inverse process of thermal oxidation Nd²⁺ → Nd³⁺ proceeds at annealing temperatures above 50–70 °C. In some sense this fact contradicts available results. We suspect that low temperature stability of photo-induced Nd²⁺ centers may be due to the closely spaced electron and hole centers (Arkhangel'skaya, 1967) formed in charge-transfer process under photo-reduction.

Fig. 3 displays thermal decay of absorption bands of x-irradiated CaF₂–Nd at room temperature. It was shown that both absorption bands of Nd²⁺ centers (0.8 eV, 2.1 eV, 2.8 eV, 4.2 eV and 5.2 eV) and absorption band at 6 eV-centers decay at the same temperature. All bands of Nd²⁺ are shifted to shorter wavelengths by few nm and splitting of bands in the visible range is decreased in the row from the absorption of Vₖ centers (see Table 1). These bands are due to absorption of Nd²⁺ and were observed first in additively colored CaF₂ crystals (Arkhangel'skaya et al., 1967).

Table 1

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Peak 1</th>
<th>Peak 2</th>
<th>Peak 3</th>
<th>Peak 4</th>
<th>Peak 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaF₂</td>
<td>0.8</td>
<td>2.1</td>
<td>2.8</td>
<td>4.2</td>
<td>5.2</td>
</tr>
<tr>
<td>SrF₂</td>
<td>0.9</td>
<td>2.2</td>
<td>2.8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BaF₂</td>
<td>1.2</td>
<td>2.2</td>
<td>2.5</td>
<td>3.9</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 1. Optical absorption of CaF₂ (a), SrF₂ (b), BaF₂ (c) doped with NdF₃ after X-irradiation at 80 K (curve 1) and after heating x-irradiated crystals to 120 K (curve 2). Absorption spectra were measured at 80 K.

Fig. 2. Thermal decay of Nd²⁺ in CaF₂, SrF₂, BaF₂ doped with NdF₃ crystals irradiated at room temperature. Absorption was controlled in the maximum of the absorption bands at 0.8 eV (CaF₂), 0.9 eV (SrF₂), 1.2 eV (BaF₂).
CaF\textsubscript{2} to BaF\textsubscript{2}. The shift of the absorption of 4f–5d bands in the row from CaF\textsubscript{2} to BaF\textsubscript{2} is also the case for some other rare-earth ions. It is caused by decrease of a crystal field splitting of 5d levels (Radzhabov and Nepomnyashchikh, 2008). Behavior of the absorption band at about 6 eV in the row from CaF\textsubscript{2} to BaF\textsubscript{2} is different from bands related to Nd2+ centers. Radzhabov et al. (Radzhabov, 2016; Figura et al., 1989), identified the absorption band at about 6 eV in the spectra of irradiation-colored CaF\textsubscript{2} -Tm, Dy and CaF\textsubscript{2}, SrF\textsubscript{2}, BaF\textsubscript{2} doped with Yb crystals. The study proved this band to belong to hole F\textsubscript{3} centers. In the irradiated CaF\textsubscript{2}, SrF\textsubscript{2} and BaF\textsubscript{2} doped with Nd crystals, the strong absorption bands in ultraviolet region at about 6 eV could be attributed to absorption of F\textsubscript{3} centers. Hereby, recombination between a hole of F\textsubscript{3} and an electron of Nd2+ centers takes place at the heating.

4. Conclusion

After x-irradiation at 80 K the optical absorption of V\textsubscript{g} centers and Nd3+ ions are observed in CaF\textsubscript{2}, SrF\textsubscript{2}, BaF\textsubscript{2} doped with Nd\textsubscript{3+}. Several bands of inter-configuration 4fn–4fn−1–5 d1 transitions of Nd3+ were recorded: 0.8 eV, 2.1 eV, 2.8 eV, 4.2 eV and 5.2 eV – for CaF\textsubscript{2}; 0.9 eV, 2.2 eV, 2.8 eV, 4 eV and 5 eV – for SrF\textsubscript{2} and 1.2 eV, 2.2 eV, 2.5 eV, 3.9 eV – for BaF\textsubscript{2}.

The charge reduction of Nd by irradiation is not temperature-stable, and the ion reoxidation (Nd2+ → Nd3+) occurs under heating to 570 K in CaF\textsubscript{2}, 520 K in SrF\textsubscript{2} and 470 K in BaF\textsubscript{2}. The strong absorption bands in ultraviolet region at about 6 eV CaF\textsubscript{2}, SrF\textsubscript{2} and BaF\textsubscript{2} doped with Nd could be attributed to absorptions of F\textsubscript{3} centers.

Acknowledgments

This work was supported by RFBR (projects # 15-02-06666-a, 15-02-06514-a).

References

Radzhabov, E., Nepomnyashchikh, A., 2008. Charge-transfer bands in alkaline-earth fluoride crystals doped by Eu3+ or Yb3+ ions. Solid State Commun. 146, 376–379.
Radzhabov, E., Nagirnyi, V., Kirm, M., Prosekina, E., 2012. 5d-4f emission of Nd3+, Sm3+, Ho3+, Er3+, Tm3+ ions in alkaline earth fluoride crystals. IEEE Trans. Nucl. Sci. 59 (5–2), 2074–2078.