Theoretical study of Ce$^{2+}$ cubic centres in alkaline earth fluoride crystals

N. Popov a,b,*, A. Mysovsky a,b, R. Shendrik b, E. Radzhabov b

a Irkutsk National Research Technical University, 83 Lermontov Street, Irkutsk, Russia
b A.P. Vinogradov Institute of Geochemistry SB RAS, 1a Favorsky St., Irkutsk, Russia

HIGHLIGHTS

- Ab initio study of Ce$^{2+}$ impurity centres in alkaline earth fluoride crystals.
- Calculated Ce$^{2+}$ ground state in CaF$_2$ and SrF$_2$ is predominantly 4f15d1 singlet.
- Calculated absorption spectra are in good agreement with experimental data.

ARTICLE INFO

Article history:
Received 28 October 2015
Received in revised form 14 December 2015
Accepted 8 January 2016
Available online 12 January 2016

Keywords:
Rare earth
Cerium
Divalent
Spinorbit
QMMM
Quantum chemistry

ABSTRACT

In this paper we present theoretical study of Ce$^{2+}$ impurity centres in alkaline earth fluoride crystals (CaF$_2$, SrF$_2$). Only cubic configurations of centres were considered. Electronic levels and related properties were studied using CASSCF/CASPT2 approach within embedded-cluster formalism including scalar relativistic corrections and spin-orbital interaction. Calculated absorption spectra for Ce$^{2+}$ in CaF$_2$ and SrF$_2$ are in good agreement with experimental data. For both crystals the ground state of Ce$^{2+}$ ion has predominantly 4f15d1 singlet character.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Alkaline earth fluorides (CaF$_2$, SrF$_2$, BaF$_2$) activated with trivalent rare earth ions are widely used as the material of scintillators. However, the same impurities can appear in alkaline earth fluoride crystals in divalent form upon additive colouration or irradiation and participate in energy transfer processes (Shendrik et al., 2016; McClure and Kiss, 1963; Merz and Pershan, 1967). The presence of divalent rare-earth ions might lead to the delay of scintillation process and decrease of the crystal light output.

It is well established that the divalent cerium free-ion ground state has 3H$_4$ 4f2 configuration and the lowest 4f15d1 levels lie between 3277 and 18,444 cm$^{-1}$ (Sugar, 1965). However, in the crystal the interaction between crystal-field and many-electron wave-function can lower the energy of 4f15d1 states compared to that of 4f2 states. Several authors have previously deduced that the ground state of cubic Ce$^{2+}$ centres in CaF$_2$ is 4f15d1 using ab initio methods (Visser et al., 1993) and crystal field theory calculation compared with experimental data (Alig et al., 1969). At the moment, theoretical works about electronic and geometrical structure as well as 4f15d1 \rightarrow 4f2 transitions of Ce$^{2+}$ centres in SrF$_2$ crystals are not available. Experimental absorption spectrum of Ce$^{2+}$ in SrF$_2$ has been obtained recently by our colleagues. Detailed information of this experimental can be found in Ref. (Shendrik et al., 2016).

In order to achieve better understanding of the energy transfer process in alkaline earth fluorides further investigation of such centres is necessary. The purpose of this work is to investigate the structure, electronic configuration and electronic transitions for Ce$^{2+}$ in CaF$_2$ and provide new theoretical results for Ce$^{2+}$ in SrF$_2$.

* Corresponding author. Irkutsk National Research Technical University, 83 Lermontov Street, Irkutsk, Russia.
E-mail address: brodiaga38@gmail.com (N. Popov).

http://dx.doi.org/10.1016/j.radmeas.2016.01.013
1350-4487/© 2016 Elsevier Ltd. All rights reserved.
2. Calculation details

Electronic structure calculations of cubic Ce$^{2+}$ centres in CaF$_2$ and SrF$_2$ were performed with Molcas molecular chemistry package (Aquilante et al., 2010). Combined quantum mechanics/molecular mechanics (QMMM) embedded cluster approach which we used in this work allows us to divide the crystal with the defect into several regions described at different levels of theory:

1. Quantum-mechanical (QM) cluster which is calculated ab initio
2. Classical region where the interaction between ions is described with pair potentials
3. Region of fixed point charges reproducing proper crystalline field inside 1 – 2 region.

Using geometry optimization procedure we can obtain lattice polarization under defect presence. Lattice relaxation in this scheme is allowed for both classical and QM regions. Classic molecular mechanics interaction were described by Buckingham pair potentials. Parameters for Buckingham potential were obtained from Stoneham and Taylor (1981) and optimized for our model systems. This scheme has already shown good results in the works of various authors (Myasnikova et al., 2010; Mysovsky et al., 2011, 2004; Sushko et al., 2005).

Electronic structure calculations were performed at the state – average completed active space level of theory (SA-CASSCF).

ANO-RCC all electron basis sets were used for Ce (Roos et al., 2008), Ca (Roos et al., 2004) and Sr (Roos et al., 2004) ions. Ab initio model potentials (AIMPs) were placed on Ca, F (Pascal and Seijo, 1995) and Sr (Pascal and Seijo, 2007) ions in the classical region in order to avoid possible distortion of QM cluster electronic density caused by the presence of bare Coulomb potentials created by point charges. Correlation of rare earth electronic states was taken into account using complete active space second order perturbation theory (CASPT2) (Andersson et al., 1990).

We decided to use such combination of electronic structure calculation methods because heavy elements (rare earth) exhibit strong static and dynamic correlation effects as a consequence of having a near degenerate electronic configurations. This combination shows good results in calculation of rare earth electronic structure (Ning et al., 2012).

SA-CASSCF spin-free calculations with 12 active orbitals (4f, 5d) and 2 active electrons performed with equal weight for all states provided the following state list (the absence of spin values in the term means this term appears for both singlet and triplet states):

1) 4f55d1 with 5d electron belonging to E_g irreducible representation: $T_{1u} + T_{2u} - T_{1u} + T_{2u}$
2) 4f55d1 with 5d electron belonging to T_{2g} irreducible representation: $T_{2u} - A_{2u} + E_u + T_{1u} + T_{2u}, A_{1u} + E_u, T_{1u} + T_{2u}$
3) 4f5 electrons in the same irreducible representation: $2T_{1u} + 3T_{2u} + 2T_{3u} - 2 \times T_{1u} + 2 \times T_{2u} + T_{1u}$
4) 4f5 electrons in the different irreducible representation: $A_{2u} + E_u + T_{1g} + T_{2g} - T_{1g}$
5) 5d1 electrons in the same irreducible representation: $T_{2g} + 3E_g + 2 \times T_{2g} - 2 \times E_g$
6) 5d1 electrons in different irreducible representation: $T_{1g} + T_{2g}$

Absorption spectrum was obtained for a set of correlated states including spin–orbit interaction with the restrictive active space state interaction method (RASSI). In our model system spin–orbit coupling does not affect structural parameters of the defect and is ignored during structure relaxation process.

We have studied cubic configuration of the Ce$^{2+}$ centres in CaF$_2$ and SrF$_2$ represented by the smallest possible (CeF$_8$)$^{5-}$ quantum cluster (see Fig. 1). Geometry optimization was performed in O_h symmetry.

We have already used the same QMMM/CASPT2/RASSI combination of electronic structure methods in our previous work for Ce$^{3+}$ O$_6$ and Ce$_6$ centre in CaF$_2$ and obtained a good agreement with experimental data (Popov et al., 2015).

3. Result and discussion

3.1. Electronic and geometric properties

The distance between impurity Ce$^{2+}$ ion and its nearest neighbours slightly increased during the geometry optimization of the defect ground state (See Table 1). As it was mentioned earlier the interaction of 5d E_g electron and the crystal field can lead to difference between free-ion and ion-in-the-crystal ground state electronic configuration. We obtained that the ground state of Ce$^{2+}$ in both crystal is predominantly singlet 4f55d1. Spin–orbit interaction leads to the ground state with the larger amount of singlet (80%) and small admixture of triplets states (20%). It is consistent with previous results for Ce$^{2+}$ in CaF$_2$ where the ground state is mixture of $^1G_4 + ^3F_3 + ^3H_4$.

The lowest 14 spin-free states are 4f5d for both spin multiplicities. The character of lowest 4f55d1 spin–orbit states in CaF$_2$ agree qualitatively with the results of crystal field calculation (Alig et al., 1969). Energies of these levels are shown in the first column of Table 2. The same energies with systematic error subtracted (around 600 cm$^{-1}$) are shown in column 4 as “Corrected”.

It should be noted that absorption spectrum can be obtained only if all considered states are included in the same state-averaged CASSCF calculation. The specifics of state-averaged CASSCF method is, simply speaking, that the more states are included in the calculation the worse is the accuracy of each particular state. The reason of energies overestimation in all-state averaging calculation is the intruder state inclusion, i.e. small admixture of some higher energy state.

This is why the energies obtained in such calculation turned out to be overestimated with respect to experiment by approximately 600 cm$^{-1}$ for 4f55d1 and by 4000 cm$^{-1}$ for 4f6. In order to explain the nature of this systematic error we applied different state averaging schemes. Column 2 of Table 2 shows the energies of cluster; (CeF$_8$)$^{5-}$ quantum

Table 1

<table>
<thead>
<tr>
<th>System</th>
<th>Before, Å</th>
<th>After, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce$^{2+}$ in CaF$_2$</td>
<td>2.60</td>
<td>2.69</td>
</tr>
<tr>
<td>Ce$^{2+}$ in SrF$_2$</td>
<td>2.77</td>
<td>2.81</td>
</tr>
</tbody>
</table>

Fig. 1. (CeF$_8$)$^{5-}$ quantum cluster, Ce$^{2+}$ at the centre and nearest neighbour F$^{-}$.

N. Popov et al. / Radiation Measurements 90 (2016) 55–58
states with state averaging only over those states, as well as the energies of 4f2 states with averaging again only over this group of states. All these energies demonstrate excellent agreement with the experiment.

It can be observed from comparison of column 1 (all-state averaging) and column 2 (separate averaging over 4f15d1 and 4f2 groups of states) that the order of states and their relative positions are the same. The energies obtained with all-state averaging can be corrected by subtraction of D_{SEC} (systematic error correction) which is also shown in Table 2.

Concerning 4f2 one can see that lowest levels are described as $3H_4$ with $T_2 + E + T_2 + A_1$ and $3H_5$ with $T_1 + E + T_2 + T_1$. Splitting between this terms is around 2000 cm$^{-1}$. Next set of calculated levels ($3H_6$) appear before 10,000 cm$^{-1}$. Energy of such lowest levels were introduced in Table 2 for CeF$_2$ including systematic error subtraction (around 4000 cm$^{-1}$). Characteristic splitting of 4f5d1 E_g – T_{2g} is around 11,000 cm$^{-1}$. It was observed that lowest 5d2 state appears above 35,000 cm$^{-1}$ for Ce$^{2+}$ in CaF$_2$.

Similar calculations were performed for Ce$^{2+}$ in SrF$_2$. The resulting structure of energy levels is the same as in the case of CaF$_2$. Calculated energy levels are presented in Table 3 for 4f5d1 and 4f2. The only difference is that for SrF$_2$ the obtained energies are lower than for CaF$_2$ due to larger nearest neighbour distance. The 4f2 states in SrF$_2$ lie by 1000 cm$^{-1}$ lower than in CaF$_2$. Characteristic splitting of 4f5d1 E_g – T_{2g} is around 10,000 cm$^{-1}$. The lowest 5d2 state for Ce$^{2+}$ in SrF$_2$ appears above 32,000 cm$^{-1}$.

3.2. Absorption spectrum

Calculated absorption and experimental data from Shendrik et al. (2016) spectra are shown in Fig. 2 for Ce$^{2+}$ in CaF$_2$ and in Fig. 3 for SrF$_2$. Calculated oscillator strengths have been renormalized to compare better with experimental data. Highest calculated oscillator strength for CaF$_2$ is 10^{-3} and SrF$_2$ is 5×10^{-4}.

As it was introduced in Refs. (Shendrik et al., 2016) and (Sizova and Radzhabov, 2012) for divalent cerium in CaF$_2$ one can observe two sets of absorption lines after x-ray irradiation in region of interest. There are: 6452, 9679, 10,490 cm$^{-1}$ narrow bands and 16,940, 22,580 cm$^{-1}$ wide bands. Narrow bands correspond $4f^{5d1}$ / $4f^2$ transitions and the wide band is associated with photochromic PC^+ centre (Sizova and Radzhabov, 2012). For Ce$^{2+}$ in SrF$_2$ at 80 K we have a few sharp lines around 8100 cm$^{-1}$ and wide bands at 11,290 and 18,550 cm$^{-1}$.

Comparing theoretically calculated and experimental spectra it can be concluded that narrow bands in both crystals are due to $4f^{5d1}$ / $4f^2$ transitions.

4. Conclusion

In this paper we had shown that divalent cerium centres can appear in CaF$_2$ and SrF$_2$ after additive colouration or x-ray irradiation. Using quantum chemistry calculation within embedded cluster formalism we have established that the ground state of cubic rare-earth defect is $4f^{5d1}$ and has predominantly singlet character in with some triplet admixture.

The correct quantum-chemical description of these defects

Table 2

<table>
<thead>
<tr>
<th>State averaging</th>
<th>D_{SEC}</th>
<th>Corrected</th>
<th>Expt. (Alig et al., 1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4f5d1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0(T$_2$)</td>
<td>0(T$_2$)</td>
<td>0(T$_2$)</td>
<td>0(T$_2$)</td>
</tr>
<tr>
<td>850(E)</td>
<td>140(E)</td>
<td>250(E)</td>
<td>192(E)</td>
</tr>
<tr>
<td>980(T$_2$)</td>
<td>340(T$_2$)</td>
<td>380(T$_2$)</td>
<td>427(T$_2$)</td>
</tr>
<tr>
<td>1610(A$_2$)</td>
<td>964(A$_2$)</td>
<td>1010(A$_2$)</td>
<td>1074(A$_2$)</td>
</tr>
<tr>
<td>1720(T$_2$)</td>
<td>1232(T$_2$)</td>
<td>1120(T$_2$)</td>
<td>1085(T$_2$)</td>
</tr>
<tr>
<td>2250(E)</td>
<td>1730(E)</td>
<td>1650(E)</td>
<td>1488(E)</td>
</tr>
<tr>
<td>2283(T$_1$)</td>
<td>1756(T$_1$)</td>
<td>1683(T$_1$)</td>
<td>1686(T$_1$)</td>
</tr>
<tr>
<td>2700(A$_2$)</td>
<td>2214(A$_2$)</td>
<td>2100(A$_2$)</td>
<td>1831(A$_2$)</td>
</tr>
<tr>
<td>4f2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,000(T$_2$)</td>
<td>7088(T$_2$)</td>
<td>7000(T$_2$)</td>
<td>7011(T$_2$)</td>
</tr>
<tr>
<td>11,400(E)</td>
<td>7560(E)</td>
<td>7400(E)</td>
<td>7479(E)</td>
</tr>
<tr>
<td>11,450(T$_1$)</td>
<td>7633(T$_1$)</td>
<td>7450(T$_2$)</td>
<td>7520(T$_1$)</td>
</tr>
<tr>
<td>11,715(A$_1$)</td>
<td>7802(A$_1$)</td>
<td>7775(A$_1$)</td>
<td>7775(A$_1$)</td>
</tr>
<tr>
<td>12,825(T$_1$)</td>
<td>8756(T$_1$)</td>
<td>8825(T$_1$)</td>
<td>8818(T$_1$)</td>
</tr>
<tr>
<td>12,950(T$_2$)</td>
<td>8822(T$_2$)</td>
<td>8950(T$_2$)</td>
<td>8954(T$_2$)</td>
</tr>
<tr>
<td>13,130(E)</td>
<td>9104(E)</td>
<td>9130(E)</td>
<td>9174(E)</td>
</tr>
<tr>
<td>13,410(T$_1$)</td>
<td>9222(T$_1$)</td>
<td>9410(T$_1$)</td>
<td>9320(T$_1$)</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>4f5d1 calc.</th>
<th>4f2 calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(T$_2$)</td>
<td>6070(T$_2$)</td>
</tr>
<tr>
<td>300(E)</td>
<td>6150(E)</td>
</tr>
<tr>
<td>420(T$_2$)</td>
<td>6600(T$_1$)</td>
</tr>
<tr>
<td>1060(A$_2$)</td>
<td>6940(A$_2$)</td>
</tr>
<tr>
<td>1150(T$_1$)</td>
<td>8100(T$_1$)</td>
</tr>
<tr>
<td>1650(E$_2$)</td>
<td>8200(E)</td>
</tr>
<tr>
<td>1735(T$_1$)</td>
<td>8540(T$_2$)</td>
</tr>
<tr>
<td>1800(A$_2$)</td>
<td>8640(T$_1$)</td>
</tr>
</tbody>
</table>

Fig. 2

Ce$^{2+}$ cubic centre in CaF$_2$ optical absorption spectrum ($4f^{5d1}$ → $4f^2$).

Fig. 3

Ce$^{2+}$ cubic centre in SrF$_2$ optical absorption spectrum ($4f^{5d1}$ → $4f^2$).
requires accounting for the dynamic correlation, scalar relativistic, spin-orbital and lattice polarization effects. Using this treatment we confirmed previous results of crystal-field and ab initio calculations (Visser et al., 1993) of cubic Ce$^{2+}$O$_3$ centre in CaF$_2$ and obtained new results for Ce$^{2+}$O$_3$ in SrF$_2$. Experimentally obtained narrow absorption lines for cubic Ce$^{2+}$ in CaF$_2$ and SrF$_2$ are in good agreement with calculated 4f55d1 \rightarrow 4f2 transition spectrum.

Acknowledgement

The reported study was funded by RFBR according to the research project No.15-02-06666_a.

All calculations were performed on a Fock supercomputer at Irkutsk National Research Technical University.

References

