SOLID-STATE SPECTROSCOPY

Dual Nature of R_N-centers in LiF Crystals

L. I. Shchepina, S. S. Kolesnikov, V. M. Kalikhman, and I. V. Teryaeva

Research Institute of Applied Physics, Irkutsk State University, Irkutsk, 664003 Russia Received July 12, 1999

Abstract—An alternative model of the N_c-center as a complex defect consisting of the F_2^+ -center perturbed by the F_L defect (where F_L is Li⁰ in the F-center) is confirmed by the methods of optical spectroscopy and X-ray diffraction analysis of LiF crystals. Upon selective optical excitation, these centers are decomposed into F_2 and F_L defects. © 2000 MAIK "Nauka/Interperiodica".

INTRODUCTION

The R_N spectral region attracts the attention of researchers because LiF(F₂, F₃⁺) crystals are used as laser media [1, 2]. To optimize parameters of the active elements, it is necessary to know the nature of color centers absorbing at the emission wavelength of working centers (F₃⁺) and in the pumping region (F₂). In this paper, we studied the behavior of color centers upon photometric transformations, mechanisms of formation, and destruction of R_N-centers in order to determine their nature.

In the R_N spectral region (500–550 nm), the N_1 - and N_2 -centers were earlier identified in γ -irradiated crystals, with the absorption bands at 512 and 542 nm at 78 K and at 520 and 550 nm at 300 K [3, 4], and also the N_a- (500 nm), N_b- (525 nm), and N_c-centers (550 nm) [5]. The N_a-, N₁-, and N₂-centers can be efficiently produced by annealing γ -irradiated crystals, and the N_b - and N_c -centers, by exposure to light. In [6], the model of N_c-centers as reoriented F₃-centers was suggested. It was assumed that upon optical excitation in the R_1 region at room temperature, the $F_3 \longrightarrow F_2 + F$ dissociation takes place, and at a low temperature (78 K) the F-center hops from the lattice site no. 1 to the lattice site no. 7 or 9, with the formation of the reoriented F_{3} center (Fig. 1). However, this mechanism [6] of formation of N_c-centers is unlikely at low temperature because the reorientation of the defect requires the energy consumption, as its dissociation.

We assumed [7] that upon optical excitation the electron density of the F_3 -center is localized at the nearest lithium cation lying on the axis of symmetry of the center, along the $\langle 111 \rangle$ direction. The lithium atom is displaced simultaneously to one of the anion vacancies of the F_3^+ -center, and a complex defect is formed, which is responsible for absorption in the N_c-band:

$$F_{3} + Li^{+} + h\nu \longrightarrow (F_{3})^{*} + Li^{+}$$

$$\longrightarrow Li^{0} + F_{2}V_{a}^{+} \longrightarrow F_{L}F_{2}^{+} + V_{c},$$
(1)

where F_L is Li⁰ in the F-center. It is obvious that the displacement of the lithium atom to the (111) plane located at a distance of $a\sqrt{3}/6$ from the nearest cation requires the energy consumption, which is, however, considerably lower than that required for the F-center to hop by a distance of $a\sqrt{2}/2$ (*a* is the lattice parameter). This mechanism of transformation of the color center is confirmed by the increase in the ionic conductivity in bleached samples. One of the aims of this paper is to prove the existence of the $F_L F_2^+$ defect.

EXPERIMENTAL

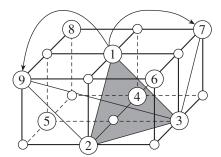
We studied γ -irradiated ($D = 1.5 \times 10^7$ R) LiF samples grown by the Stockbarger technique in vacuum. The crystals were irradiated by xenon lamps of a Kvant-17 laser (1 MW) to produce the R_N -centers and also by the second and fourth harmonics of an Nd: YAG laser to induce phototransformations of color centers. The isochronous annealing was performed in the temperature range from 373 to 573 K with a step of 50 K and a time lag of 15 min. The absorption spectra were recorded with an MPS-50L spectrophotometer at 78 and 300 K. The luminescence was excited by an Nd : YAG laser. The X-ray diffraction analysis was performed with a DRON 2.0 (Cu $K_{\alpha 1, \alpha 2}$) diffractometer. The spacing of lattice planes d_{hkl} and broadening $\beta = S/I_{\text{max}}$ (where S is the area under the contour of the resolved peak) of all reflexes were measured.

RESULTS AND DISCUSSION

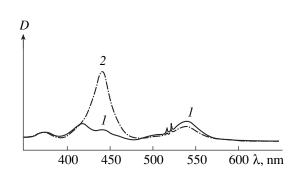
Figure 2 shows absorption spectra of a crystal with the induced R_N bands before and after irradiation by the fourth harmonic of an Nd : YAG laser at 78 K. One can see that irradiation results in the decrease in the N_c absorption band and increase in the *M* band. In addition, the red emission appears at 650 nm, which is typical for the F₂-centers; i.e., the F₂-centers are formed. Consider the possible mechanisms of formation of the *M* band:

$$\mathbf{F}_{2}^{+} + e \longrightarrow \mathbf{F}_{2}, \tag{2}$$

$$\mathbf{F}' + \mathbf{V}_a^+ \longrightarrow \mathbf{F}_2, \tag{3}$$


$$F_3 \longrightarrow F_2 + F_2$$
, (4)

$$\mathbf{F}_{2}^{*}\mathbf{F}_{L} + e \longrightarrow \mathbf{F}_{2}^{*}\mathbf{F}_{L} \longrightarrow \mathbf{F}_{2} + \mathbf{F}_{L} + h\mathbf{v}.$$
 (5)


Optical bleaching occurs at low temperature (78 K), which suggests that anion vacancies and the F-centers are immobile. For this reason, we can exclude reactions (3) and (4) from consideration. Assume that the F_3 -center undergoes the transition to the predissociation state. In this case, the F_2 - and F-centers will be excited in collisions and come apart with the decreased kinetic energy. Then, the F absorption band should increase; however, the reverse is observed. Note that no varia-

tions occur in the absorption region of the F_2^+ - and F'-centers ($\lambda_m = 350 \text{ nm}$) [8]). Therefore, the concentration of the F₂-centers cannot increase due to reaction (2). However, the destruction of the F-centers is observed, along with the N_c band. The photocurrent was not detected [9], which suggests that an electron is tunneling from the excited level of the F-center to the level of a positively charged defect. The tunneling occurs most likely to the excited level of the F_2^+ -center perturbed by the F_L defect, because the intensity of the 550-nm absorption band decreases and the emission intensity of the F2-centers increases upon photobleaching at 78 K. Upon selective optical excitation, these centers decompose into the F₂- and F_L-centers. In [10], the spectral parameters of the F_L -centers were calculated. It was shown that these centers have the doublet absorption band, with one of the components located from the high-energy side of the F band (213 nm) and the other one, from the low-energy side (274 nm). The overlap with the F band complicates the observation of these centers.

The existence of the $F_2^+F_L$ defects does not exclude the light-induced formation of the reoriented F_3 -centers at 300 K. We should take into account these defects in the X-ray diffraction analysis. The crystal lattice parameter increases after γ -irradiation, when the defects are produced both in the anion (F-centers) and cation (V-centers) sublattices. The lattice parameter

Fig. 1. Model of the N_c -center in a LiF crystal proposed in [6].

Fig. 2. Absorption spectra of a LiF crystal containing R_{N^-} centers (*1*) before and (2) after irradiation by the fourth harmonic of an Nd : YAG laser at 78 K.

does not change after photobleaching of samples by radiation from xenon lamps, when along with the reconstruction of the regular lattice sites $(F_n + H \longrightarrow F_{n-1}, ..., F + H \longrightarrow R)$ the photoinduced defects are formed. However, we detected the increase in the relative broadening $\beta = S/I_{max}$ of the reflexes, which suggests the appearance of local stresses in the crystal lattice caused by photoinduced defects. If these defects were the reoriented F_3 -centers, their formation would not affect appreciably the value of β . Therefore, the lithium atom (R = 1.56 Å) in the F-center remains as a possible defect producing local stresses in the sample.

It was assumed in [5] that the N_c- (550 nm) and N_b (525 nm) centers have high-energy transitions (N_c)* corresponding to the 415 and 365-nm absorption bands, respectively. However, the behavior of these bands upon photometric transformations, especially the absence of the cymbate dependence of the 365 and 525-nm bands upon excitation by the second harmonic of an Nd : YAG laser, is inconsistent with this assumption.

CONCLUSION

Our study of processes of the radiation-thermal and optical transformations of color centers in LIF crystals grown by the Stockbarger technique in vacuum confirmed the alternative model of the N_c -center as a com-

plex defect consisting of the F_2^+ -center perturbed by the F_L defect, where F_L is Li⁰ in the F-center. Upon selective optical excitation, these centers are decomposed into F_2 - and F_L -centers. It is shown that the N_c band has the dual nature. To establish the nature of the 525-nm N_b band, further studies should be performed.

ACKNOWLEDGMENTS

The authors thank V. M. Kostyukov for useful discussions. This work was supported by the Russian Foundation for Basic Research, project no. 97-02-16019.

REFERENCES

- 1. M. P. Lisitsa, V. V. Silenko, and I. N. Khalimonova, Zh. Prikl. Spektrosk. **45**, 656 (1987).
- V. M. Kostyukov, N. T. Maksimova, and Z. I. Myreeva, Opt. Spektrosk. **79**, 625 (1995) [Opt. Spectrosc. **79**, 574 (1995)].

- 3. T. Kamicawa and K. Ozawa, J. Phys. Soc. Jpn. 27, 1212 (1969).
- A. E. Hughes and W. A. Runciman, Proc. Phys. Soc. 86, 615 (1965).
- 5. K. Van der Lugt and Y. W. Kim, Phys. Lett. 22, 50 (1966).
- K. Van der Lugt and Y. W. Kim, Phys. Rev. 171, 1096 (1968).
- 7. L. I. Shchepina, V. N. Salomatov, and T. G. Yur'eva, Izv. Vyssh. Uchebn. Zaved., Fiz. **42** (1999) (in press).
- 8. V. I. Baryshnikov, T. A. Kolesnikova, and S. V. Dorohov, in *Proceedings of VIII Europhysics Conference on Defects in Insulating Materials* (Keele, Staffs, UK, 1998), p. 147.
- R. Lee, J. Merklin, D. Marrs, *et al.*, Phys. Status Solidi B 33, 506 (1981).
- B. D. Lobanov, V. M. Kostyukov, N. T. Maksimova, *et al.*, Fiz. Tverd. Tela (St. Petersburg) **37**, 2545 (1995).

Translated by M. Sapozhnikov