УЛК 535.34

ЭФФЕКТИВНАЯ АПКОНВЕРСИЯ В ЩЕЛОЧНОЗЕМЕЛЬНЫХ ФТОРИДАХ, АКТИВИРОВАННЫХ ИОНАМИ Yb³⁺—Ho³⁺

© 2019 г. Е. А. Раджабов^{1, *}, Р. Ю. Шендрик¹

¹Федеральное государственное бюджетное учреждение науки Институт геохимии им. А.П. Виноградова Сибирского отделения Российской академии наук, Иркутск, Россия

> *E-mail: eradzh@igc.irk.ru Поступила в редакцию 03.09.2018 г. После доработки 10.09.2018 г.

Принята к публикации 22.10.2018 г.

Исследованы оптические спектры (поглощения, возбуждения, свечения, энергетического выхода), связанные с апконверсией инфракрасного возбуждения 980 нм в видимое излучение в кристаллах щелочноземельных фторидов CaF_2 , SrF_2 , BaF_2 с двойной активацией YbF_3 (0.01–10 мол. %) и HoF_3 (0.01–0.3 мол. %). В интервале плотностей мощности возбуждения 0.1–10 $Br \cdot cm^{-2}$ интенсивность апконверсионных полос 542, 650, 752 нм увеличивается как квадрат мощности. Обнаружена квадратичная зависимость интенсивности апконверсии от концентрации сенсибилизатора Yb^{3+} (0.03–3 мол. %) и слабая зависимость от концентрации Ho^{3+} (0.01–0.3 мол. %) с максимумом при 0.1–0.15 мол. %. Предполагается, что апконверсия обусловлена последовательным переносом энергии от двух близкорасположенных возбужденных ионов иттербия на ион гольмия.

DOI: 10.1134/S0367676519030190

ВВЕДЕНИЕ

Поиск эффективных люминофоров, преобразующих ближнее инфракрасное излучение в видимый свет, остается актуальной задачей [1]. Расширение областей использования апконверсионных люминофоров для применения в качестве защитных меток на ценных бумагах и купюрах, биологических меток [2], оптической термометрии [3], солнечной энергетики [4] и новых лазерных сред [5] требует поиска более эффективных материалов. Среди известных механизмов апконверсии наиболее эффективным является механизм сенсибилизированной апконверсии с переносом энергии (sensitizied energy transfer upconversion) [1, 6].

Так, внутренний энергетический выход полного спектра апконверсии NaYF₄-25% Er при возбуждении 1500 нм достигает 12% при небольших плотностях освещения 0.4 Вт \cdot см⁻² [4]. При этом основная интенсивность апконверсии находится в полосе около 1000 нм, что подходит для повышения эффективности кремниевых солнечных батарей [4]. В кристаллах CaF₂-1% Но при высокой мощности накачки $2.2 \cdot 10^3$ Вт \cdot см⁻² получена высокая эффективность 8.1% апконверсии 750 нм в свечение 550 нм, что может использоваться для разработки апконверсионного лазера [5].

Ион Yb^{3+} является эффективным сенсибилизатором для ионов $Ho^{3+},\ Tm^{3+},\ Er^{3+}$ из-за его

большого сечения поглощения около 980 нм и эффективного переноса энергии возбуждения на активаторы [1, 7]. Апконверсия пары примесей—лантаноидов: сенсибилизатора Yb³+ и активатора Ho³+ — исследовалась в различных фторидах и оксидах [7—10]. Эта пара, по-видимому, является наиболее перспективной для преобразования излучения 900—1000 нм в видимое. В работе [11] изучался обратный перенос возбуждения от ионов Ho³+ (сенсибилизаторы) к ионам Yb³+ (активаторы) для повышения эффективности солнечных ячеек.

Хотя основные механизмы апконверсии известны [1, 13], детальные механизмы переноса энергии и структура дефектов требуют дополнительных исследований. Нами исследована эффективная апконверсия в кристаллах CaF_2 , SrF_2 , BaF_2 , активированных YbF_3 — HoF_3 с концентрациями в интервале 0.01 до 10 мол. %.

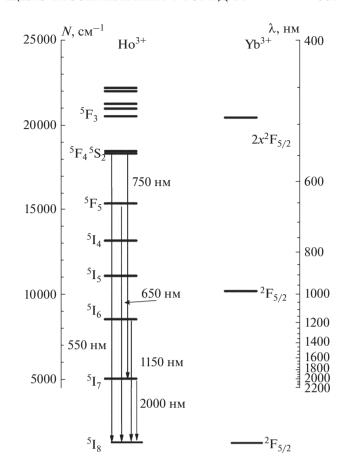
МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы MeF_2 (Me: Ca, Sr, Ba) выращивали методом Стокбаргера в трехствольном графитовом тигле в вакууме [12]. Несколько процентов CdF₂ добавляли в сырье для очистки от примеси кислорода. Были выращены кристаллы щелочноземельных фторидов, в которых помимо примеси YbF₃ (концентрация 0.01-10%) добавляли второй

лантаноид. В ряде кристаллов незначительная доля ионов Yb^{3+} (около 10%) при выращивании преобразовывалась в двухвалентную форму.

Для возбуждения антистоксовой люминесценции использовали полупроводниковый лазерный модуль 980 нм с измеренной мощностью 69 мВт. В ряду изученных нами пар лантаноидов Yb—*RE* (*RE*: Pr, Nd, Sm, Dy, Ho, Er, Tm) только кристаллы, активированные Yb—Ho, Yb—Er и Er, обладали эффективной видимой апконверсионной люминесценцией.

Спектры поглощения в области 190—3000 нм измеряли на спектрофотометре Perkin-Elmer Lambda-950. Спектры свечения в области 200—850 нм измерены с использованием фотомодуля Натапаты Н6780-04. Спектры свечения в длинноволновой области измеряли фотоумножителем ФЭУ83 (до 1200 нм), фотоприемным устройством с охлаждаемым Ge-фотодиодом ФПУ-ФДГ ЛОМО-ФОТОНИКА (до 1600 нм) и охлаждаемым фотосопротивлением PbS -ФСВ19АА (до 2500 нм).


Энергетический выход апконверсии щелочноземельных фторидов MeF_2 —3% YbF_3 —0.1% HoF_3 измерен с помощью интегрирующей сферы. Приемником излучения являлся кремниевый фотодатчик TSL237. Интенсивность возбуждающего пучка измеряли как с помощью сферы, так и с помощью термопарного измерителя мощности лазерного излучения ИМО-2М. Интенсивность апконверсии измеряли через фильтр C3C25, отсекающий инфракрасное излучение лазера 980 нм. Преобразование показаний TSL247 в мощность излучения (ватты) осуществлялось с помощью лазера 536 нм через ослабляющий фильтр HC13 с измеренной мощностью.

РЕЗУЛЬТАТЫ

Спектры свечения

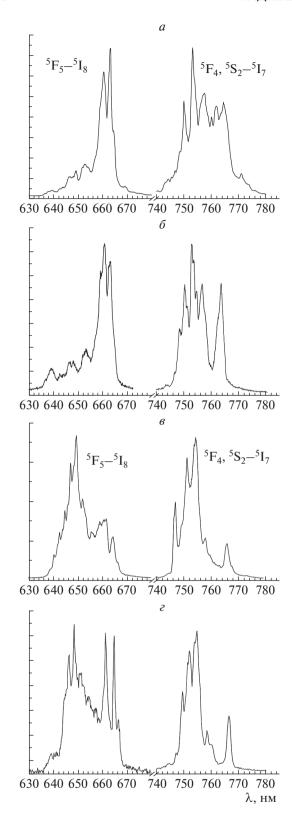
При возбуждении кристаллов MeF_2 —Yb—Ho светом лазера 980 нм, попадающего в полосу Yb³⁺ ($^2F_{7/2}$ — $^2F_{5/2}$), нами наблюдались антистоксовы полосы люминесценции Ho³⁺ при 542 нм (5S_2 , 5F_4 — 5I_8), 650 нм (5F_5 — 5I_8), 752 нм (5S_2 , 5F_4 — 5I_7) и стоксовы полосы при 1150—1180 нм (5I_6 — 5I_8), при 1950—2050 нм (5I_6 — 5I_8) (рис. 1). Полосы свечения обладали развитой структурой вследствие расщепления уровней Ho³⁺ кристаллическим полем.

Поскольку вероятность резонансного переноса энергии от Yb^{3+} к Ho^{3+} зависит от расстояния между ними как R^{-6} , следует ожидать возмущения ионов Ho^{3+} близкорасположенными ионами Yb^{3+} . В связи с этим, мы сравнили спектры Ho^{3+} кристаллов MeF_2 —Yb—Ho при возбуждении Yb^{3+} светом лазера 980 нм, и при возбуждении Ho^{3+} светом лазера 532 нм (рис. 2). Структуры полос

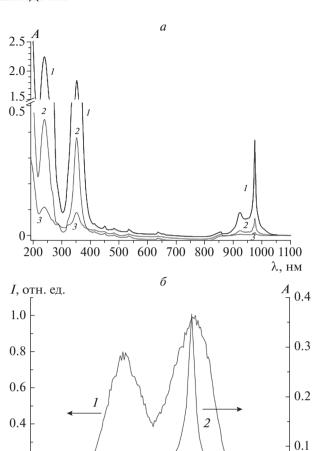
Рис. 1. Схема уровней ионов ${\rm Ho}^{3+}$ и ${\rm Yb}^{3+}$ и наблюдаемых переходов в кристаллах ${\it MeF}_2$ — ${\rm Yb}$ — ${\rm Ho}$. Показано также положение удвоенного по энергии уровня ${}^2{\rm F}_{5/2}\,{\rm Yb}^{3+}$.

 ${
m Ho^{3^+}}$ при возбуждении лазером 980 нм (апконверсия) и при возбуждении 532 нм, попадающем в край полосы ${
m Ho^{3^+}}$, значительно отличаются.

Спектры поглощения и возбуждения


В спектрах поглощения кристаллов щелочноземельных фторидов с двойной активацией наблюдаются полоса около $1000 \text{ нм} {}^2F_{7/2} - {}^2F_{5/2} \text{ Yb}^{3+}$ и полосы Ho^{3+} в интервале 400-800 нм (рис. 3a). Интенсивные широкие полосы 360 и 220 нм принадлежат ионам Yb^{2+} , частично восстановившимся из Yb^{3+} при выращивании кристаллов (см. рис. 3a).

Спектры возбуждения измерены излучением лампы ДКСШ-200 прошедшим через монохроматор МДР-2. Спектр ксеноновой лампы измеряли германиевым фотодиодом и фотосопротивлением PbS и корректировали на спектральную чувствительность фотоприемников. Спектр возбуждения зеленого свечения Ho^{3+} в BaF_2 коррелирует со спек-


0.2

0 ⊨ 850

900

Рис. 2. Спектры свечения кристаллов BaF_2 и SrF_2 с примесью 0.1 мол. % YbF_3 и 0.1 мол. % HoF_3 при возбуждении светом 532 нм $(a-BaF_2, \delta-SrF_2)$ и 980 нм $(s-BaF_2, \epsilon-SrF_2)$ при 80 К.

Рис. 3. a — Спектры поглощения кристаллов BaF_2 с примесью Yb F_3 (I — 3% Yb, d = 2.21 мм; 2 — 1% Yb, d = 2.37 мм; 3 — 0.1% Yb, d = 2.49 мм;) и 0.1 мол. % Ho F_3 ; δ — спектр возбуждения зеленого свечения Ho^{3+} в кристаллах BaF_2 с примесью 3 мол. % Yb F_3 и 0.1 мол. % Ho F_3 (I, 80 K). Для сравнения показан спектр поглощения этого кристалла (I, 295 K).

950

λ, нм

1000

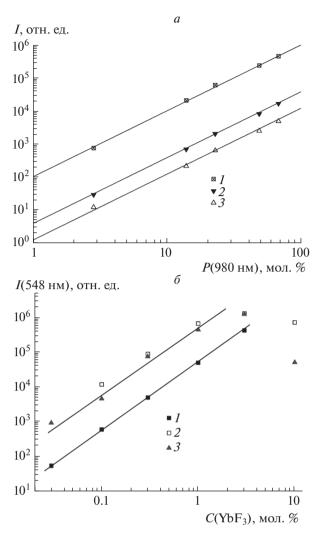
1050

тром поглощения (рис. 3δ). Большая ширина полос возбуждения относительно полос поглощения обусловлена большей спектральной шириной щели монохроматора (см. рис. 3δ).

Эффективность апконверсии

Интенсивности антистоксовых полос свечения Но³⁺ пропорциональны квадрату мощности излучения лазера 980 нм (рис. 4*a*), что указывает на двухфотонный механизм возбуждения. Стоксовы инфракрасные полосы свечения при 1180 и 2000 нм линейно растут с увеличением мощности возбуждения.

Интенсивность апконверсии кристаллов имеет слабо выраженный максимум при концентрации HoF_3 в интервале 0.1-0.15 мол. % при постоянной концентрации YbF_3 . Интенсивность апконверсии квадратично растет с увеличением концентрации YbF_3 до 3 мол. % (рис. 46). Это указывает на то, что в составе центра апконверсии нахолятся два иона Yb^{3+} .


Энергетический выход люминофора определяется как отношение излученной и поглошенной мощности энергии. Для апконверсионных люминофоров энергетический выход растет с увеличением поглощенной мощности. Поэтому для характеристики *п*-фотонной апконверсии предложена нормированная эффективность, в которой энергетический выход делится на мощность излучения (или поглощенную мощность) в степени (n-1), что приводит к единицам нормированной эффективности двухфотонного процесса $cm^2 \cdot BT^{-1}$ [1]. В то же время отмечено, что в эффективных порошковых материалах NaYF₄-Er, Gd₂O₂S-Ег выход насыщается с ростом мощности излучения, что означает уменьшение нормированной эффективности с ростом мощности [4]. Отклонение от (n-1) степени зависимости выхода апконверсии от плотности мощности возбуждения наблюдалось также в других работах [14].

В нашем случае квадратичная зависимость роста интенсивности видимой апконверсии и, соответственно, линейный рост энергетического выхода наблюдали во всем диапазоне измерений $0.1-10~{\rm BT\cdot cm^{-2}}$. Данные по эффективности апконверсии монокристаллов $MeF_2-3\%~{\rm YbF_3}-0.1\%~{\rm HoF_3}$ приведены в табл. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Можно полагать, что количество апконверсионных центров значительно меньше общего количества ионов ${\rm Ho^{3+}}$. Вследствие этого структуры полос свечения ${\rm Ho^{3+}}$ в апконверсионном центре и всех имеющихся ионов гольмия существенно отличаются (см. рис. 2). Это вызвано близким расстоянием между ионами Yb—Ho в апконверсионном центре, что приводит к возмущению переходов в ионе гольмия.

В кристаллах CaF_2 —Но и CaF_2 —Но, Er, изучением спектров возбуждения и люминесценции с высоким разрешением, установлено существование двух типов центров с одиночными ионами Ho^{3+} и трех типов агрегатных центров с двумя и более ионами гольмия [15]. Апконверсия наблюдалась только для агрегатных центров в CaF_2 — Ho-Ho, Ho-Er [15], Er-Er [16] и являлась следствием переноса энергии между соседними ионами. Подобный вывод сделан в работе [17], в которой получена квадратичная зависимость интен-

Рис. 4. a-3ависимости интенсивности антистоксовых полос свечения (I-542, 2-650, 3-752 нм) от мощности возбуждающего излучения 980 нм в кристаллах ${\rm SrF}_2$ с примесью 0.3 мол. % ${\rm YbF}_3$ и 0.1 мол. % ${\rm HoF}_3$. $\delta-3$ ависимости интенсивности зеленого свечения ${\rm Ho}^{3+}$ от концентрации ${\rm Yb}^{3+}$ в кристаллах ${\rm BaF}_2$ и ${\rm SrF}_2$ ($I-{\rm BaF}_2-0.1\%$ ${\rm HoF}_3-{\rm YbF}_3$, $2-{\rm SrF}_2-0.1\%$ ${\rm HoF}_3-{\rm YbF}_3$, $3-{\rm SrF}_2-0.03\%$ ${\rm HoF}_3-{\rm YbF}_3$).

сивности синих полос люминесценции ${\rm CaF_2-Ho}$ (при возбуждении зеленым светом 532 нм) от концентрации гольмия.

Таблица 1. Энергетический выход (в %) кристаллов MeF_2 —Yb F_3 (3%)—Ho F_3 (0.1%) при возбуждении светом лазера 980 нм

Кристалл	Выход видимой апконверсии при освещении $0.9~{\rm Bt\cdot cm^{-2}},\%$
CaF ₂	0.04
SrF_2	0.10
BaF ₂	0.09

Обнаруженная нами квадратичная зависимость полос апконверсии от концентрации Yb и слабая зависимость от концентрации Ho со всей определенностью указывает на то, что апконверсионным центром в кристаллах щелочноземельных фторидов является комплекс из двух ионов иттербия и одного иона гольмия. Такие комплексы образуются уже при концентрации примеси YbF₃ + HoF₃ около 0.03 мол. %.

ЗАКЛЮЧЕНИЕ

В спектрах люминесценции нами наблюдались полосы Ho^{3+} при 542 нм (${}^5S_2, {}^5F_4 - {}^5I_8$), 650 нм (${}^5F_5 - {}^5I_8$), 752 нм (${}^5S_2, {}^5F_4 - {}^5I_7$) с развитой структурой вследствие взаимодействия ионов с кристаллическим полем. Структуры полос Ho^{3+} при возбуждении лазером 980 нм (апконверсия) и при возбуждении 532 нм, попадающем в край полосы Ho^{3+} , значительно отличаются, что обусловлено возмущением ионов гольмия в апконверсионном центре.

Апконверсионным центром в кристаллах щелочноземельных фторидов MeF_2 —Yb—Ho является комплекс из двух ионов иттербия и одного иона гольмия, что подтверждается квадратичной зависимостью полос апконверсии от концентрации Yb и слабой зависимостью от концентрации Ho.

Работа выполнена с использованием научного оборудования ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН. Работа выполнена при частичной поддержке проекта 0350-2016-0024 СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Auzel F. // Chem. Rev. 2004. V. 104. P. 139.
- Huang P., Zheng W., Zhou S. et al. // Angewandte Chem. Intern. Ed. 2014. V. 53. P. 1252.
- 3. *Zhou S., Jiang S., Wei Xi. et al.* // J. of Alloys and Compounds. 2014. V. 588. P. 654.
- 4. Fischer S., Martín-Rodríguez R., Fröhlich B. et al. // J. Lumin. 2014. V. 153. P. 281.
- 5. Bullock S.R., Reddy B.R., Venkateswarlu P., Nash-Stevenson S.K. // J. Opt. Soc. Am. B. 1997. V. 14. P. 553.
- Ronda C. (Ed.) Luminescence. From theory to application. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, 2008, 260 p.
- 7. Esterowitz L, Schnitzler A., Noonan J., Bahler J. // Appl. Opt. 1968. V. 7. P. 2053.
- 8. Esterowitz L., Noonan J., Bahler J. // Appl. Phys. Lett. 1967. V. 10. P. 126.
- 9. Zhang L.N.Y., Brundage R.T., Yen W.M. // J. Lumines. 1984. V. 31–32. P. 257.
- 10. Watts R. K. // J. Chem. Phys. 1970. V. 53. P. 3552.
- Martin-Rodriguez R., Meijerink A. // J. Lumin. 2014.
 V. 147. P. 147.
- 12. Radzhabov E., Nagirnyi V., Kirm M., Prosekina E. // Nucl. Sci. IEEE Trans. 2012. V. 59. P. 2074.
- Feofilov P.P., Ovsyankin V.V. // Appl. Opt. 1967. V. 6. P. 1828.
- 14. Page R.H., Schaffers K.I., Waide P.A. et al. // J. Opt. Soc. Am. B. 1998. V. 15. P. 996.
- Seelbinder M.B., Wright J.C. // Phys. Rev. B. 1979.
 V. 10. P. 4308.
- Tallant D.R., Wright J.C. // J. Chem. Phys. 1975. V. 63. P. 2074.
- Tang S.H., Zhang H.Y., Kuok M.H., Kee S.C. // Phys. Stat. Sol. B. 1991. V. 168. P. 351.