# СПЕКТРОСКОПИЯ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

УДК 535.34

# МОЛЕКУЛЯРНЫЕ ИОНЫ F<sub>3</sub> В КРИСТАЛЛАХ ФТОРИДОВ

© 2016 г. Е.А. Раджабов

Институт геохимии им. А.П. Виноградова Сибирского отделения РАН, 664033 Иркутск, Россия Иркутский государственный университет, 664003 Иркутск, Россия E-mail: eradzh@igc.irk.ru Поступила в редакцию 21.06.2015 г.

Исследованы спектры поглощения молекулярных ионов  $F_3^-$  в кристаллах LaF<sub>3</sub>, SrF<sub>2</sub>, CaF<sub>2</sub>, BaF<sub>2</sub> с редкоземельными активаторами в ультрафиолетовой области. Сравнением спектров радиационно

и аддитивно окрашенных кристаллов выявлены полосы поглощения дырочных  $F_3^-$ -центров, расположенные около 6 эВ. Неэмпирические расчеты оптических переходов находятся в хорошем согласии с экспериментальными величинами.

DOI: 10.7868/S0030403416010189

### ВВЕДЕНИЕ

Однозарядные молекулярные ионы  $X_3^-$  (X-Cl, Br, J) изучены в газовой фазе, растворах и ионных кристаллах [1, 2]. Основываясь на подобии спектров поглошения облученных шелочно-галоидных кристаллов и растворов, полосы поглощения в области 5-6.2 эВ приписаны поглощению ионов Cl<sub>3</sub>, Br<sub>3</sub>, I<sub>3</sub> [3, 4]. Различают три типа Х<sub>3</sub>-центров в щелочно-галоидных кристаллах:  $V_2, V_3, V_4$ . В галоидах калия центры  $V_2$  образуются облучением при 100 K, а V<sub>4</sub> и V<sub>3</sub> – при температурах 200 и 300 К соответственно [5]. Низкотемпературные V<sub>2</sub>- и V<sub>4</sub>-центры обладают дихроизмом поглощения. Предполагается, что в V<sub>3</sub>-центр представляет собой изолированный ион Х<sub>3</sub>, а в центрах  $V_2$  и  $V_4$  рядом с молекулярным ионом располагается одна или две вакансии [5].

Тригалоидные молекулярные ионы  $F_3^-$ ,  $Cl_3^$ получены соосаждением галоидов натрия и цезия с аргоном в соотношении 1/400 при 15 К [6]. Полоса поглощения  $Cl_3^-$  обнаружена около 4.9 эВ, тогда как в образцах с  $F_3^-$  поглощение начиналось около 6.2 эВ с ростом в сторону меньших длин волн. Расстояние между фторами в ионе  $F_3^-$  оценено в 1.55 Å [6], неэмпирические расчеты дают несколько большее расстояние 1.74 Å [1, 2]. Относительно недавно  $F_3^-$  обнаружены в газовой фазе методом электронно-захватной масс-спектрометрии [7]. Энергия диссоциации  $F_3^-$  на  $F^-$  и  $F_2$  равна 1.02 эВ, что делает проблематичной существование  $F_3^-$  в водных растворах [8].

Полоса поглощения  $F_3^-$  в CaF<sub>2</sub>–Tm, CaF<sub>2</sub>–Dy расположена при 6.0 эВ [9]. В этих кристаллах тригалоидные центры образовывались под действием рентгеновского облучения при температурах выше 100 К [9]. В то же время полоса поглощения трифторидных молекул в LiF обнаружена в существенно более коротковолновой области при 11 эВ [10, 11]. В кристаллах SrCl<sub>2</sub>–K<sup>+</sup> [12] цен-

тры  $Cl_3^-$  относительно легко переориентировались при освещении поляризованным светом вдоль главной оси кристалла, что приводило к почти полному дихроизму в полосе поглощения этих центров при 4.7 эВ.

Процессы образования стабильных дырочных центров являются необходимым звеном в понимании деталей радиационного окрашивания галоидных кристаллов. В настоящей работе исследовано образование стабильных до  $300-500^{\circ}$ С трифторидных молекулярных ионов  $F_3^-$  в кристаллах фторидов (LaF<sub>3</sub>, CaF<sub>2</sub>, SrF<sub>2</sub>, BaF<sub>2</sub>).

### МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы фторидов выращивались методом Стокбаргера в трехствольном графитовом тигле в вакууме<sup>1</sup>. Несколько процентов  $CdF_2$  добавлялось в сырье для очистки от примеси кислорода. Концентрация примеси фторидов лантаноидов в шихте была 0.01, 0.1 и 0.3 моль %. Спектры погло-

<sup>&</sup>lt;sup>1</sup>Кристаллы выращены В.А. Козловским.



**Рис.** 1. Спектр поглощения кристаллов  $LaF_3-0.3\%$  YbF<sub>3</sub> при комнатной температуре, наведенный рентгеновским излучением. Указаны предполагаемые полосы F<sub>3</sub><sup>-</sup> и Yb<sup>2+</sup>-центров. Провал около 5 эВ обусловлен преобразованием ионов Ce<sup>3+</sup>.

щения в области 190—3000 нм измерялись на спектрофотометре Perkin-Elmer Lambda-950<sup>2</sup>, спектры в области вакуумного ультрафиолета измерялись на лабораторной установке с использованием монохроматора BMP2 (115—300 нм). Источником вакуумного ультрафиолета являлась разрядная дейтериевая лампа L7292 (Hamamatsu), приемником излучения был ФЭУ142.

Радиационное облучение производилось с помощью рентгеновской трубки БХВ-12 при напряжении 40 кВ и токе 20 мА в течение 40 мин. Образцы размещались непосредственно на выходном окне рентгеновской трубки и окрашивались с двух сторон.

Аддитивное окрашивание кристаллов осуществлялось в автоклаве из нержавеющей стали при температурах 700-850°С. Образцы кристаллов и кусочки металлического кальция помещались в разные контейнеры. После герметизации и вакуумирования до 10<sup>-2</sup> торр автоклав опускался в печь. После нагрева до желаемой температуры автоклав с образцами выдерживался в печи в течение 1-3 ч в зависимости от толщины образцов и температуры окрашивания. Поверхность образцов  $SrF_2$  и  $BaF_2$  в результате окрашивания становилась мутной, образцы полировались заново. Кристаллы фторида лантана как беспримесные (см. также [13]), так и с примесью редких земель после окрашивания становились серыми. В микроскоп было видно появление металлических частиц (очевидно, La) по всему объему образцов. Нагревание аддитивно окрашенных кристаллов фторида лантана до 700–900°С с последующей закалкой уменьшало количество металлических частиц, но не приводило к появлению окраски.

Неэмпирические расчеты кристаллических кластеров проведены пакетом Gaussian [14] методом функционала плотности (DFT) с гибридным потенциалом B3LYP и базисами 6N311G(d, p) (для CaF<sub>2</sub>) и LANL2DZ для LaF<sub>3</sub>. Энергии оптических переходов рассчитаны методом TDDFT (time dependent density functional theory).

### ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

### Фторид лантана

В кристаллах  $LaF_3$  с примесью редкоземельных ионов  $RE^{3+}$  (Yb, Tm, Sm, Ho) при рентгеновском облучении при комнатной температуре образуются центры с интенсивной полосой поглощения с максимумом при 6.2 эВ (рис. 1).

В спектрах поглощения кристаллов LaF<sub>3</sub> обнаружены полосы 6.46, 6.02, 5.69, 5.30 и наибольшая при 5.0 эВ, принадлежащие ионам Ce<sup>3+</sup> [24]. Следовая концентрация церия в кристаллах LaF<sub>3</sub> была оценена путем сравнения их спектров поглощения со спектром LaF<sub>3</sub>–0.01% CeF<sub>3</sub> и составляла 0.001–0.005 моль %. Под действием рентгеновского облучения небольшая доля ионов Ce<sup>3+</sup> меняла валентность, что проявлялось в спектрах наведенного поглощения (рис. 1, провал при 5.0 эВ).

Наиболее отчетливо полоса при 6.2 эВ измеряется в кристаллах LaF<sub>3</sub>-YbF<sub>3</sub>. С увеличением концентрации трехвалентного редкоземельного иона растет полоса при 6.2 эВ (при одинаковой дозе облучения). Параллельно с образованием ультрафиолетовой полосы при 6.2 эВ в кристаллах LaF<sub>3</sub> с примесью YbF<sub>3</sub>, TmF<sub>3</sub>, SmF<sub>3</sub>, NdF<sub>3</sub> наводятся также слабые полосы в области 0.5-4 эВ, которые будем называть длинноволновыми полосами. Каждая примесь образует свои характерные длинноволновые полосы поглощения, а положение и ширина полосы при 6.2 эВ остаются неизменными. Длинноволновые полосы поглощения в облученных кристаллах LaF<sub>3</sub>-SmF<sub>3</sub> обусловлены переходами в двухвалентных редкоземельных ионах, создающихся ионизирующим излучением. Длинноволновые полосы поглощения в LaF<sub>3</sub> как минимум на порядок меньше полосы при 6.2 эВ (рис. 1).

При нагревании облученного кристалла  $LaF_3$ -0.3% YbF<sub>3</sub> полоса при 6.2 эВ разрушается в интервале температур 350–650°С. При освещении кристаллов  $LaF_3$ -YbF<sub>3</sub> светом разрядной дейтериевой лампы ДДС30 полоса наведенных  $F_3^-$ -цен-

<sup>&</sup>lt;sup>2</sup> Оборудование Байкальского аналитического центра коллективного пользования СО РАН.



**Рис. 2.** Сравнение спектров поглощения кристаллов  $CaF_2$ –YbF<sub>3</sub> (a), SrF<sub>2</sub>–YbF<sub>3</sub> (b) и BaF<sub>2</sub>–YbF<sub>3</sub> (b), наведенных рентгеновским излучением (2), и спектров, полученных аддитивным окрашиванием (1).

тров обесцвечивалась параллельно с полосами Yb<sup>2+</sup>-центров при 4.0 и 3.35 эВ. Дихроизм полосы при 6.2 эВ, представляющий собой разность спектров поглощения, измеренных через поляризатор, направленный вдоль главной оси кристалла и поперек нее, не обнаружен.

#### Щелочно-земельные фториды

В кристаллах щелочно-земельных фторидов с примесью трехвалентных редкоземельных ионов рентгеновское излучение при комнатной температуре наводит электронные центры — ионы RE<sup>2+</sup> и дырочные центры —  $F_3^-$ ,  $V_{kA}$ . Появление  $F_3^-$ -полосы маскируется сильными полосами двухвалентных ионов RE<sup>2+</sup> в области 6.2 эВ. В предыду-

щей работе разделение общего поглощения в об-

ласти 5–8 эВ на поглощение  $F_3^-$  и поглощение  $Tm^{2+}$  проводилось сравнением спектров поглощения кристаллов, облученных рентгеновским излучением, и спектров аддитивно окрашенных кристаллов [9]. В области около 6.2 эВ Yb<sup>2+</sup> дает меньший вклад в общее поглощение, чем  $Tm^{2+}$ . Это предоставило нам возможность более надежно выделить поглощение дырочных  $F_3^-$ -центров в кристаллах CaF<sub>2</sub> – 0.1% YbF<sub>3</sub> (максимум 6.08 эВ, полуширина 2.03 эВ) (рис. 2а). В кристаллах SrF<sub>2</sub>–0.1% YbF<sub>3</sub> полоса молекулярных ионов  $F_3^-$  находится при 6.0 эВ с полушириной 1.7 эВ (рис.26). Помимо основных дырочных центров  $F_3^-$  в кристаллах при комнатной температуре на-



Рис. 3. Полная энергия (1), энергия оптического перехода (2) и сила осциллятора (3) линейного молекулярного иона F<sub>3</sub><sup>-</sup>.

водятся дырочные центры  $(F_2^-)_{ii}$  с полосой около 4.1 эВ [23], которые можно удалить нагревом до 100—120°С (см. также [9]). Полосы поглощения двухвалентных ионов и дырочных центров  $F_3^-$  в кристаллах щелочно-земельных фторидов примерно одинаковы по величине (рис. 2).

В аддитивно окрашенных кристаллах BaF<sub>2</sub>-Yb в области выше 5.5 эВ наблюдается сильное поглощение неизвестной природы (рис. 2в). Похожие сильные полосы поглощения наблюдаются также при 7.8 эВ в CaF<sub>2</sub> (рис. 2а) и 7.0 эВ в SrF<sub>2</sub> (рис. 2б). Подобное поглощение при энергиях фотонов выше 5.5 эВ наблюдалось нами в аддитивно окрашенных кристаллах BaF<sub>2</sub> с различными редкоземельными ионами (Sm, Nd, Ho, Tm, Er, Gd, Lu), а также и в беспримесных кристаллах. Ранее сильный рост поглощения выше 5.5 эВ наблюдался в аддитивно окрашенных кристаллах ВаF<sub>2</sub>-Nd [15]. При нагревании аддитивно окрашенных кристаллов BaF2-Tm ультрафиолетовое поглощение разрушалось около 800°C с разрушением всех других полос. Ультрафиолетовое поглощение в BaF<sub>2</sub> накладывается на поглощение

F<sub>3</sub>-центров, что не позволяет выделить полную

полосу  $F_3^-$  из сравнения спектров радиационно и аддитивно окрашенных кристаллов (рис. 3). В то же время подобие спектров поглощения  $BaF_2$ -Yb в интервале 4–5.5 эВ (рис. 2в) и спектров  $CaF_2$ -Yb,  $SrF_2$ -Yb (рис. 2а, 2б) позволяет сделать вывод,

что полоса  $F_3^-$  в BaF<sub>2</sub> также находится около 6 эВ.

# РАСЧЕТЫ

Впервые схема молекулярных орбиталей тригалоидных однозарядных ионов в нынешней форме предложена Пиментелом [16]. Расчетам электронных и колебательных уровней ионов тригалоидов  $X_3^-$  посвящено большое количество работ (см., например, [1, 2, 17–20]). Атомные  $p_z$ -орбитали крайних фторов образуют наивысшую занятую  $\sigma_g$ -орбиталь, а  $p_z$ -орбитали трех фторов образуют наинизшую незанятую  $\sigma_u$ -орбиталь. Электронная конфигурация основного состояния  $\sigma_g^2$ , что соответствует терму  ${}^{1}\Sigma_g$ , конфигурация возбужденного состояния  $\sigma_g^1 \sigma_u^1$ , что соответствует терму  ${}^{1}\Sigma_u$ .

Неэпирический расчет линейного иона F<sub>3</sub> указывает на небольшой вклад s- состояний центрального фтора в наивысшую занятую σ<sub>e</sub>-орбиталь. Незанятая ои-орбиталь образована тремя разнонаправленными pz-орбиталями фторов. Переход  ${}^{1}\Sigma_{g} - {}^{1}\Sigma_{u}$  является разрешенным дипольным переходом с высокой силой осциллятора 1-2 и ориентацией перехода вдоль оси молекулы. Равновесное расстояние между соседними фторами равно 1.75 Å, заряды крайних фторов –0.45, а центрального фтора -0.1, энергия оптического перехода 7.16 эВ. С уменьшением равновесного расстояния полная энергия сильно возрастает, увеличивается также энергия основного перехода  ${}^{1}\Sigma_{g} - {}^{1}\Sigma_{u}$  и сила осциллятора основного перехода (рис. 3).

Основываясь на фотодиссоциации  $F_3^-$ -центров в CaF<sub>2</sub> на H- и  $V_k$ -центры, предложена модель  $F_3^-$ -центра как молекулярного иона, образованного междоузельным атомом фтора и двумя узельными фторами с осью молекулы вдоль большой диагонали куба фторов [9]. Расчет подходящего для этой модели кластера (Ca<sub>6</sub>F<sub>9</sub>)<sup>5+</sup> показал,

ОПТИКА И СПЕКТРОСКОПИЯ том 120 № 2 2016

что расстояние F-F в молекулярном ионе  $F_3^$ уменьшается от начального 2.37 до 1.73A (сдвиг на 0.64 Å) за счет образования связи F-F-F, что близко к расчетному расстоянию в свободном ионе

 $F_3^-$ . Энергия оптического перехода  ${}^1A_{1g} - {}^1A_{2u}$  (соответствующего  ${}^1\Sigma_g - {}^1\Sigma_u$  в свободном ионе) равна 6.52 эВ, что близко к экспериментальной величине 6.08 эВ. Сила осциллятора перехода 0.36.

В то же время измерениями дихроизма погло-

щения  $Cl_3^-$ -центров в кристаллах  $SrCl_2$ , имеющего решетку типа флюорита, убедительно установлена ориентация этих центров по оси 100 [12]. В свя-

зи с этим мы рассчитали также свойства  $F_3^-$ -центра в CaF<sub>2</sub>, ориентированного вдоль оси четвертого порядка. Междоузельный фтор помещен между двумя ближайшими фторами с начальным расстоянием между соседними фторами 1.37 Å. В процессе оптимизации геометрии кластера Ca<sub>6</sub>F<sub>13</sub>

расстояние между соседними фторами в  $F_3^-$  центре увеличилось до 1.88 Å, что соответствовало сдвигу крайних фторов на 0.52 Å относительно положения в невозмущенной решетке. Расчетный максимум полосы поглощения  ${}^{1}\Sigma_{g} - {}^{1}\Sigma_{u}$  находится при 5.7 эВ с силой осциллятора перехода 0.8. В настоящее время невозможно сделать определенный выбор между двумя ориентациями

 $F_3^-$ -центров в Ca $F_2$ , необходимы измерения дихроизма.

Имеется несколько возможных ориентаций молекулярных ионов  $F_3^-$  в решетке LaF<sub>3</sub>. Отталкиваясь от предположения о направлении  $F_3^-$ 

вдоль главной оси кристалла, выбран кластер  $La_5F_{20}$ , в котором междоузельный фтор помещен между двумя узельными фторами, направленными по оси *Z*. Наибольшее искажение решетки вызывает междоузельный фтор, смещающий соседние два фтора и следующие два иона лантана от центра по оси *Z*. Равновесное расстояние между фторами в ионе  $F_3^-$  равно 1.71 Å. Для расчета оптического перехода кластер уменьшен до  $La_5F_{12}$ . Длина волны оптического перехода, соответствующего  ${}^{1}\Sigma_g - {}^{1}\Sigma_u$  в свободном ионе, равна 6.36 эВ, что близко к экспериментальной величине 6.2 эВ.

## ОБСУЖДЕНИЕ

Сила осциллятора перехода равна 1.3.

Полоса при 6.2 эВ, образованная рентгеновским излучением при комнатной температуре, одинакова в кристаллах  $LaF_3$  с примесью разных трехвалентных лантаноидов (Yb, Tm, Sm, Ho). Следовательно, полоса при 6.2 эВ соответствует поглощению собственных центров, каковыми и являются молекулярные ионы  $F_3^-$ . По положению и полуширине полосы  $F_3^-$ -центров в разных фторидах близки между собой. Это обусловлено сильной молекулярной связью в ионе трифторида. Энергия перехода  ${}^{1}\Sigma_{g} - {}^{1}\Sigma_{u}$  в значительной степени определяется расстоянием между фторами и в первом приближении может описываться результатами, приведенными на рис. 3. В кристаллах фтористого лития предполагаемая полоса по-

глощения  $F_3^-$  сильно смещена в коротковолновую сторону до 11.3 эВ [8, 9]. Для такого перехода расстояние между фторами должно уменьшиться до величины 1.42 Å, на что нужно затратить значительную энергию 2.8 эВ (рис. 3). По-видимому,

центры  $F_3^-$  в LiF требуют дополнительных исследований.

Рассмотрим процесс радиационного образования дефектов в кристаллах  $LaF_3$ -SmF<sub>3</sub>. При рентгеновском облучении  $LaF_3$ -SmF<sub>3</sub> наводятся полосы поглощения центров Sm<sup>2+</sup>-анионная вакансия, изученных нами в предыдущей работе [21], а также центры с полосой при 6.2 эВ. На образование центра Sm<sup>2+</sup>-вакансия затрачивается электрон и анионная вакансия. Следовательно, оставшийся междоузельный атом фтора может объеди-

ниться с дыркой с образованием центра  $F_3^-$  подобно тому, как это происходит в кристаллах щелочных [22] и щелочно-земельных [9, 12] гало-идов.

Интенсивность полосы поглощения  $F_3^-$ -центра относительно полос  $Yb^{2+}$  (и других  $Re^{2+}$ ) значительно больше в кристаллах фторида лантана (рис. 1), чем в кристаллах щелочно-земельных фторидов (рис. 2). Это может быть обусловлено соотношением сил осцилляторов как F<sub>3</sub><sup>-</sup>, так и Yb<sup>2+</sup> в этих группах кристаллов. Квантово-химический расчет дает близкие силы осцилляторов F<sub>3</sub>-центров как в LaF<sub>3</sub>, так и в CaF<sub>2</sub>. Возможно, разница в интенсивностях обусловлена меньшей силой осциллятора 4f-5d-переходов двухвалентных редкоземельных ионов в LaF<sub>3</sub> по отношению к переходам в щелочно-земельных фторидах. В кристаллах фторида лантана рядом с двухвалентным Sm<sup>2+</sup> располагается анионная вакансия, выполняющая роль зарядового компенсатора. Возбужденные 5*d*-состояния двухвалентных ионов в LaF<sub>3</sub> будут также распространяться на анионную вакансию, что, несомненно, приведет к уменьшению перекрытия 4f- и 5d-состояний и к уменьшению силы осциллятора перехода 4f-5d.

# ЗАКЛЮЧЕНИЕ

Сравнением спектров поглощения кристаллов фторидов с различными редкоземельными ионами, полученных рентгеновским облучением со спектрами, полученными аддитивным окрашиванием, выделены полосы стабильных при ком-

натной температуре дырочных F<sub>3</sub><sup>-</sup> центров. Моле-

кулярные ионы  $F_3^-$  в кристаллах щелочно-земельных фторидов (CaF<sub>2</sub>, SrF<sub>2</sub>, BaF<sub>2</sub>) и LaF<sub>3</sub> характеризуются широкой полосой поглощения около 6 эВ.

Неэмпирические расчеты кластеров решеток СаF<sub>2</sub> и LaF<sub>3</sub> показывают образование молекуляр-

ного иона  $F_3^-$  с энергией перехода, соответствующего  ${}^1\Sigma_g - {}^1\Sigma_u$  в свободном ионе и близкой к экспериментальной.

# СПИСОК ЛИТЕРАТУРЫ

- Braida B., Hiberty P.C. // J. Am. Chem. Soc. 2004. V. 126. P. 14890.
- Kloo L. // Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications. Elsevier, 2013. V. 1. P. 233–249.
- Varley J.H.O. // J. Nuclear Energy. 1954. V. 1. P. 130– 143.
- 4. Hersh H.N. // Phys.Rev. 1957. V. 105. № 4. P. 1140.
- Winter E. M., Wolf D.R., Christy R.W. // Phys. Rev. 1969. V. 186. № 3. P. 949.
- Ault B.S., Andrews L. // Inorganic Chemistry. 1977. V. 16. № 8. P. 2024.
- Tuinman A.A., Gakh A.A., Hinde R.J., Compton R.N. // J. Am. Chem. Soc. 1999. V. 121. P. 8397.

- Artau A., Nizzi K. E., Hill B.T., Sunderlin L.S., Wenthold P.G. // J. Am. Chem. Soc. 2000. V. 122. P. 10667.
- 9. Фигура П.В., Непомнящих А.И., Раджабов Е.А. // Опт. и спектр. 1989. Т. 67. В. 6. С. 1304.
- 10. *Mayhugh M.R., Christy R.W.* // Phys. Rev. B. V. 2. № 8. P. 3330.
- 11. *Непомнящих А.И., Раджабов Е.А. //* Опт. и спектр. 1980. Т. 48. В. 4. С. 818.
- Rzepka E., Lefrant S., Taurel L. // J. Phys. C: Solid State Phys. 1975. V. 8. P. 2523.
- 13. *Radzhabov E., Nepomnyshikh A.I.* // SCINT 95: Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Delft, The Netherlands, August 28–September 1, 1995. P. 189–192.
- 14. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Gaussian, Inc., Wallingford, CT, 2003.
- 15. *Непомнящих А.И., Токарев А.Г., Черняго Б.П., Фигура П.В. //* Письма в ЖТФ. 1991. Т. 17. № 16. С. 1.
- 16. Pimentel G.C. // J. Chem. Phys. 1951. V. 19. P. 446.
- 17. Tasker P.W. // Mol. Phys. 1977. V. 33. № 2. P. 511.
- Cahill P.A., Dykstra C.E., Martin J.C. // J. Am. Chem. Soc. 1985. V. 107. P. 6359.
- 19. Gabes W., Nijman-Meester M.A.M. // J. Am. Chem. Soc. 1985. V. 107. P. 6359.
- Novoa J.J., Mota F., Alvarez S. // J. Phys. Chem. 1988.
  V. 92. P. 6561.
- Раджабов Е.А., Козловский В.А. // Изв. РАН. Сер. физ. 2015 Т. 79. № 2. С. 275.
- 22. *Itoh N.* // Cryst. Lattice Defects. 1972. V. 3. № 3. P. 115.
- 23. Фигура П.В., Непомнящих А.И., Раджабов Е.А. // Опт. и спектр. 1988. Т. 65. В. 4. С. 940.
- Elias L.R., Heaps W.S., Yen W.M. // Phys. Rev. B. 1973.
  V. 8. № 11. P. 4989.